Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
Research Article, Issue 3
Analytical Methods in Environmental Chemistry Journal
Journal home page: www.amecj.com/ir
AMECJ
Speciation of chromium in blood samples based on
dithioglycerol immobilized on carbon nanotube by dispersive
micro solid phase bioextraction
Naseh Esmaeili
a
, Eskandar Kolvari
a
and Jamshid Rakhtshah
b,*
a,*
Department of chemistry, Faculty of Science, Semnan University, Semnan, Iran
b,*
Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
ABSTRACT
A novel method based on the synthesis of dithioglycerol immobilized
on carbon nanotubes (CNTs@DTG) was used for speciation of
chromium (Cr
III
and Cr
VI
) in human blood samples by dispersive
      
mixture containing acetone and 1-octyl-3-methylimidazolium

6


-1
of Cr
III
and Cr
VI
which was diluted with DW up to 10 mL at optimized

by HS of 

and Cr(VI) ions were back-extracted from the IL/ CNTs@DTG to the
aqueous phase by changing pH for each of them before determined
      
chromium was calculated by summarizing Cr
III
and Cr
VI
content.

    
-1
and 30 ng L
-1
 


Keywords:


Dithioglycerol immobilized on carbon

Dispersive micro solid phase
bioextraction
ARTICLE INFO:
Received 5 Jun 2020
Revised form 3 Aug 2020
Accepted 27 Aug 2020
Available online 30 Sep 2020
Corresponding Author: Jamshid Rakhtshah

https://doi.org/10.24200/amecj.v3.i03.114
------------------------
1. Introduction
Heavy metals accumulate in different human tissues
      
enter to the human body from foods and waters
and absorb them by the gastrointestinal system.
      
human biological matrix have a toxicological effect

        
chromium pollutants in the environment is chemical
    
. The chromium has two species (Cr
III
and Cr
VI
) in the environment with different toxicity and
physiological effects in humans. The metabolism of

on Cr (III) compounds in humans 
(VI) is toxic and causes cancer in humans. Due to the

cells and damage the proteins and DNA of the
  
        .
     
the concentration chromium in water less than 2
66
Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
µg L
-1
  

as normal range and toxicity
in waters      
announced that the value of 0.1-1.7 µg L
-1
and
0.24-1.8 µg L
-1
for normal chromium in blood and
urine samples       
  
      
techniques such as inductively coupled plasma
mass spectrometry    
    
    


spectrometry  and electrothermal atomic
 were used for
    
       
in human samples caused to use of these techniques
     
analytical chemistry based on ionic liquids (ILs) as

of the sample preparation with green solvent.
     
     
      
dispersive micro solid phase extraction  and the
 applied
as sample preparation. The ILs as an organic salt

thermal stability about 200-350
°
  
good extractability and separation phase . The
different adsorbents such as multi-walled carbon
    
   
magnetite nanoparticles   
of magnetic particles imprinted cellulose based
biocomposites  were used for extraction and
separation of chromium ions in a different matrix.

develop a new procedure based on CNTs@DTG
adsorbent for the speciation of trace amount of Cr (III)


and the performance of the proposed method was

 
6
     
separation nanoparticles of CNTs@DTG from blood
samples.
2. Experimental
2.1. Apparatus
Chromium determination was done based on a spectra
electrothermal atomic absorption spectrometer
       
accessory. All operating parameters were set based on


357.9 nm with 0.2 nm slit was adjusted. All volumes

auto-sampler 3000. The instrumental and extraction
conditions are listed in Table 1. The temperature
programming for chromium was shown in Table
2. The pH of the solutions and human samples
        



with high sensitivity was used for determining of
      
1.0 L min
-1

-
1
). An ultrasonic bath for molecular biology such as
blood samples with temperature controlling in real-


Table 1.
ValuesParameters
357.9 nm
0.2 nm
6 mA
Automatic


Wavelength
Slit
Lamp current
Injection mode
Volume Injection

67
Speciation of chromium by CNTs@DTG nanostructure Jamshid Rakhtshah et al
2.2. Reagents and materials
All reagents with ultra-trace analytical grade

stock solution were prepared from an appropriate
amount of the nitrate salt of this analytes as 1000 mg
L
-1
solution in 0.02 mol L
-1

3

solutions were prepared daily by dilution of the stock
solution. The dithioglycerol material  
      
Germany. The buffer solution was 0.3 mol L
-1
CH
3



0.2 molL
-1
of sodium phosphate buffer solution from
the pH of 5.5 to 8.2 (Na
2

4
/NaH
2

4


3

      

 
 
6
  
from Sigma Aldrich (Germany).
2.3. Sample preparation of human blood
       
a 1.0 mol L
-1

3
solution for one day and
thoroughly rinsed for 6 times with DW. As
     


 
        
(not chromium) was added to a 5 mL blood sample.
The human blood sample was maintained at -20


samples was considered for sampling and analysis
with permit form for all patients.
2.4. Synthesis of CNTs@DTG
     
to the acid oxidation method  and the CNTs@
     

mL of dry xylene were sonicated for 15 minutes in


       
   
2
atmosphere to remove the produced HCl. The
product of CNTs@Cl was cooled down to room
      

mL of DTG were mixed in 60 mL ethanol using an



       
       
(Fig. 1).
Table 2. 
Ar ow rate (mL min
−1
)Hold time (s)Ramp time (s)Temperature (
C)Step
3001515120Dry
30015301150Ash
0.0212500Atomize
300212600Clean
Pristine
CNTs
CNTs@OH
HO
HO
HO
HO
CNTs@DTG
CNTs@Cl
O
O
Si
MeO
O
O
O
Si
MeO
Cl
S
S
Cr
OH
SH
HS
1.
HNO
3
,
H
2
SO
4
2.
NaBH
4
Methanol
CPTMS
Dry
Xylene
NEt
3
Fig. 1. Representation of the formation of CNTs@DTG.
68
Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
2.5. The extraction procedure
       
samples were used for speciation and determination
         
       
 
6
    
acetone added to standard and human blood samples
with Cr (III) and Cr (VI) concentration between
0.05-1.8 µg L



were extracted with the HS group of CNTs@DTG

CrIII
+
  
+
:(SH
2
-
SH
2
    
     
6

in the bottom of the conical tube by centrifuging
samples for 5 min. The upper phase was removed

     
3
   


       
to 0.2 mL. The total chromium (T-Cr) was simply
calculated by summarizing Cr (III) and Cr (VI)
content (Table 3). The procedure used for a 10 blank
     

curves before and after preconcentration process
(tga=m
1
/m
2


Table 3. 
ValuesFathers
6.0
2.0
5 mL

-1
R = 0.9996

0.5 mL
1 and 0.5 mol L
-1


3 min
5min
Working pH of Cr(III)
Working pH of Cr (VI)




Volume of back-extraction (eluent)

3

Amount of IL
Volume of dispersant solvent (Acetone)
Shaking time
Centrifugation time
Fig.2.  Fig.3. 
69
Speciation of chromium by CNTs@DTG nanostructure Jamshid Rakhtshah et al
3. Results and discussion
3.1. Characterizations
The hydroxyl-functionalized CNTs are used for the


          
respectively.
      
absorption band corresponding to the C=C bond
at 1570 cm
-1
    

cm
-1

the CNTs.  saw the absorption band of the

-1

the absorption bands at the range of 2500-3000
cm
-1
      
successful functionalization of CNTs with Cl-
alkylsilane material. The appearance of a band at
2625 cm
-1
  
the CNTs@DTG adsorbent.
3.2. Effect of ETAAS conditions
      
       
       
of 30 s for water evaporation with 40s of ramp

Abs was studied within a range of 600-1400
C.
The maximum Abs was obtained from 1000 to
1200

C
was selected as the optimum

determination was examined between 2000–3000

and the maximum signal was obtained at 2.500
C.
Cleaning time and temperature were ordered at 3 s
and 2.600


mL min

.
3.3. Effect of pH on the extraction

Cr (VI) ions on CNTs@DTG was investigated
       

of chromium concentration. The chemical and
physical adsorption was strongly conditioned by the
pH of solutions. The results show that the highest






applied to the speciation of two forms of chromium
at pH 2 and 6 as optimum points for Cr (VI) and
     
procedure (Fig. 5).
Fig.4.
70
Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
3.4. Effect of sample volume and amount of
ionic liquid
Sample volume is one of the most important
parameters to be studied. The effect of sample
volume between 2-20 mL was studied for 1.0


of Cr (III) and Cr (VI) ions. Quantitative
extraction was observed between 2 ml and 10 ml.
The recovery was decreased by more than 10 mL of

the ionic liquid is partially solubilized in the
liquid phase and leads to non-reproducible results.

      (Fig.
6)
the procedure was remarkably dependent on the
       
   
6
  
     
       
the quantitative extraction was obtained more than
   
6
   
of 0.1 g was selected as optimum mass for ionic
liquid for collecting and separating CNTs@DTG
from the liquid phase (Fig. 7).
3.5. Effect of CNTs@DTG mass

      
Fig. 5. The effect of pH on extraction and speciation of Cr (III)

Fig. 6. The effect of sample volume on extraction and speciation of

71
Speciation of chromium by CNTs@DTG nanostructure Jamshid Rakhtshah et al
CNTs@DTG adsorbent between 5-35 mg were
examined for Cr (III) and Cr (VI) extraction by
      
quantitative recoveries in human blood samples were
obtained with 20 mg and 25 of CNTs@DTG for Cr


 (Fig. 8).
3.6. Effect of eluent on recovery
The Cr (III) and Cr (VI) were back-extracted from


   
dissociate and release into the liquid phase. Different
      
3

H
2

4
were selected for investigating of chromium
back-extraction from the CNTs@DTG /IL phase.
The research showed that 1 mol L

 
3
and
0.5 mol L

    
(III) and Cr (VI) from the CNTs@DTG /IL phase.
3.7. Effect of interference ions on extraction

by the extraction chromium in blood samples.
       
Fig. 7. The effect of ionic liquids mass on extraction and speciation of

Fig. 8. The effect of CNTs@DTG mass on extraction and speciation of

72
Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
metal ions in blood were selected for evaluating
of potential interfering ions on the extraction of
  
 
-1
of Cr (III) and Cr (VI) and 1-2 mg L
-1
of different ions in the matrix were used. The
tolerate amounts of each ion had less than 5% of
the absorbance alteration. The results showed
interference ions do not decrease the extraction of
chromium in optimized conditions. The results are
shown in Table 4.
3.8. Validation of D-μ-SPBE procedure

(VI)
and Cr (III)
in 10 mL of human blood samples
         
 

(Table
5)
      
for determination of Cr (III) and Cr (VI) in human
     (Table
6)       
     

of the system in the determination of Cr (VI)
and Cr
(III) in human blood samples. The calibration curve



after the preconcentration process. The
Cr (VI) enters to the cytoplasm of red blood cells



total concentration of Cr in blood was calculated
by summarizing of Cr (VI) and Cr (III) which was

a low concentration in serum or plasma samples as
compared to blood samples.
Table 4. The effect of matrix ions on the determination of Cr (III)

Ions Maximum tolerance ratio
(matrix ion conc./Cr conc.)
Recovery (%)
Cr (VI)
Cr (III) Cr (VI)
Cr (III)
K
+

+

+

2+

2+
1100 900 97.4 98.3

2+

+2

2+
850 700 98.2 96.5
Cd
2+

2+
500 600 99.2 97.7
Cl
-

-

-

3
-

-
1200 1000 98.1 96.8

4
3-

3
2-

4
2-
900 750 97.5 98.2
Ag
+

2+

2+
200 250 95.3 97.6

3+
V
3+
500 650 96.8 98.9
Table 5.

a
Sample Added
(μg L
-1
) *ICP-MS (μg L
-1
) *Found (μg L
-1
)
a
Recovery (%)
A ------ 1.22 ± 0.02 1.19 ± 0.06 97.5
1.0 ------ 2.15 ± 0.07 96.0
------ 1.51 ± 0.03 1.54 ± 0.08 101.9
1.5 ------ 2.97 ± 0.14 95.3
C ------ 2.04 ± 0.05 1.98 ± 0.11 97.1
1.5 ------ 3.43 ± 0.16 96.6
D ------ 0.55 ± 0.01 0.58 ± 0.02 105.4
0.5 ------ 1.06 ± 0.05 96.0
*

a

73
Speciation of chromium by CNTs@DTG nanostructure Jamshid Rakhtshah et al
4. Conclusion


speciation and determination of trace amount of


       
the amount of IL and pH were studied and
    
ionic liquid helps to provide a reliable and
efficient extraction for speciation of Cr (III) and
Cr (VI) in blood samples as an environmentally
friendly solvent for collecting of CNTs@DTG
adsorbent from the liquid phase. The enrichment
      
      
32 ng L
-1
and 28 ng L
-1
for Cr (III) and Cr (VI)


procedure were used for speciation of Cr (III)
and Cr (VI) in human blood samples in a short
time as compared to other methods. The mean of


-1
for 5.0 mL of
    
of the methodology was confirmed by spiking
       
proposed procedure was successfully used to
speciation and separation of Cr (III) and Cr (VI)
in human blood samples.
5. Acknowledgements
      
      
      
for supporting this work. The authors wish to
thank the workers for their kindness and voluntary
participation in this study. This study was supported
       
      

the goals and stages of the study were explained
to the participants and they were asked to sign the
informed consent form.
6. References
      
chromium and chemoprevention: a brief
     
4065–4079.
     
presence of hexavalent but not trivalent
chromium causes neurotoxicity in exposed

(2017) 3368-3387.
       
  
of chromium (III) complexes in animal and

    

Table 6. Validation of chromium speciation based on CNTs@DTG in human serum

Sample Added
(μg L
-1
) Found (μg L
-1
)
a
Total
a
Recovery (%)
Cr (III) Cr (VI) Cr (III) Cr (VI) Cr (III) Cr (V)
Blood
--- --- 1.45 ± 0.08 0.26 ± 0.02 1.71 ± 0.09 --- ---
1.5 --- 2.93 ± 0.15 0.24 ± 0.01 3.17 ± 0.29 98.6 ---
--- 0.2 1.47 ± 0.09 0.45 ± 0.02 1.92 ± 0.11 --- 95.0
Blood
--- --- 1.61 ± 0.11 0.76 ± 0.03 2.37 ± 0.12 --- ---
1.5 --- 3.09 ± 0.14 0.73 ± 0.04 3.82 ± 0.20 98.7 ---
--- 1.0 1.59 ± 0.10 1.78 ± 0.08 3.36 ± 0.18 --- 102
Serum
--- --- 1.92 ± 0.09 0.14 ± 0.01 2.06 ± 0.12 --- ---
1.5 --- 3.38 ± 9 0.16 ± 0.01 3.56 ± 0.16 97.3 ---
--- 0.2 1.89 ±  0.33 ± 0.01 2.22 ± 0.11 --- 95
a

Anal. Method Environ. Chem. J. 3 (3) (2020) 65-75
      
      

 


 
     
     

40 (2018) 157–172.
     
   
    
resistance to thermal stress and interferes
wif heat shock protein expression in human
  
(2018) 477–487.
 
   


    
   
documentation of the threshold limit values

2011.
      


       
chromium by carboxylic group functionalized
mesoporous silica with inductively coupled
    
(2019) 173-180.
        
A graphene oxide decorated with
  
separation of chromium species prior to their
sequential speciation and determination via
    
296.
     

     
ultrasound-assisted magnetic solid phase

   
3
4


2
and Al
2
3
 
(2017) 1223– 1232.
 
Advanced functional materials in solid phase

    

    
         
fuel samples using energy dispersive
   
magnetic solid phase microextraction using

2
4
 
(2018) 144–151.
 
      
by electrothermal atomic absorption
   
solid phase extraction with the aid of a
novel imidazolium-functionalized magnetite


       
     
liquid microextraction and derived
   
267–415.
        


    
    
    
   

 
analysis of chromium in water samples
through sequential combination of dispersive
magnetic solid phase extraction using
  
3
4
/

2


75
Speciation of chromium by CNTs@DTG nanostructure Jamshid Rakhtshah et al
 
    

   

      
nanotube-based magnetic bucky gels in
developing dispersive solid-phase extraction:
application in rapid speciation analysis of
      

     
   
determination of Al
3+
and Cr
3+
after
preconcentration and separation on
   

3
4
  

 
   
   
speciation of Cr(III) and Cr(VI) prior
to their determination by electrothermal
   
1516.
    
    
imprinted cellulose based biocomposites
  
 
     
    

for benzene removal from air by solid phase
      
1741-1751.