Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
Research Article, Issue 1
Analytical Methods in Environmental Chemistry Journal
Journal home page: www.amecj.com/ir
AMECJ
Benzene extraction in environmental samples based on the
mixture of nanoactivated carbon and ionic liquid coated
on fused silica ber before determination by headspace
solid-phase microextraction-gas chromatography
Afsaneh Afzali
a,*
, Hossein Vahidi
b
and Saeed Fakhraie
c
a
Department of Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
b
Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of
Advanced Technology, Kerman, Iran
c
Chemistry Department, Yasouj University, P.O. Box 7483-75918, Yasouj, Iran
ABSTRACT
In this study, the mixture of nano activated carbon (NAC) and ionic
liquid (3-triphenylphosphonio-propane-1-sulfonate; C
21
H
21
O
3
PS)
was coated on
     
         
soil and vegetables samples (1.0 g, n=50) surrounding a chemical

 
        
of gas chromatography    
All effected parameters such as the sorbent mass, the amount of




o
C (10 mg of NAC and 0.1 g of ionic

      

and 127.2 mg g
-1
       

         
other nanostructures.
Keywords:
Soil and vegetables,
Nano activated carbon,
Ionic liquid,
Headspace solid phase micoextraction,
Gas chromatography spectrometry
ARTICLE INFO:
Received 2 Nov 2020



*Corresponding Author: 

https://doi.org/10.24200/amecj.v4.i01.134
------------------------
1. Introduction
Recently different sources of volatile organic
     
in atmospheric air. VOC’s consist of dangerous
compounds which were produced due to the
       
other chemical activity [1-4]   
of refrigerants, plastics, adhesives, paints, and
petroleum products is composed of VOCs [5].

caused cancer in human body 
the analysis of trace volatile organic compounds
(VOCs) in exhaled breath could potentially provide
rapid screening procedures to diagnose and monitor
the diseases of the lungs.   
showed that the earlier detection VOCs with GC-



       
detect the cancer disease in primary stages. Various
     
RNA, and cells are used in the diagnosis of cancer
in human body     
    


accumulated in liver, renal, and CNS and caused to


       
was reported by international agency for research
on cancer (IARC) [10,11]   
        
  
is the most dangerous material and cause to bone
damage, dysfunction of CNS, damage of liver and
respiratory tract. Based on US occupational safety
and health administration (OSHA) and centers for
disease control and prevention, national institute
for occupational safety and health(NIOSH), the
        
   [12].
     
degradation, the catalytic oxidation, the adsorptive
concentration-catalytic oxidation, the photocatalytic
oxidation, and the plasma catalytic oxidation were
used for removal and determination of VOCs in
water samples [13]    
 include,    
      [14].
       

must be controlled [15]. Nanoparticles (NPs) have
been highly used for removal of environmental

the unique properties of NPs, the adsorption processe
[16].


from aqueous environments [17]   
studies, the different methods such as, adsorption
, the photo-catalytic oxidation and thermal
oxidation [20] were used for removal of VOC’s
       
       
and determined in waters and wastewater samples

      
     

[15]. Recently,
the activated carbon based on micro pores and
heterogeneous surface functional groups was used
     
such as water and wastewater samples [21, 22]. Also,
the activated carbon was most commonly used as
absorbent for VOC’s removal from air and waters.
By previous researches, the adsorption capacity of
activated carbon was reported and depended on its
surface area, pore volume, porosity and chemical
functional groups. In addition, the other nano-carbon
      

removal from environment matrixes [23, 24].


extraction/separation/determination in soil and



2. Experimental
2.1. Apparatus
Gas chromatography based on air /gas loop injection

      
     
sample into the carrier gas stream and valves were
also used to inject sample gases/ liquids in gas
      

     
       
2
)

–1
was used as a carrier


Germany.
70
2.2. Reagents and Materials
      
     

-1
) was prepared (0.1,
0.2. 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 ppm) and placed on

     
purchased from Sigma and then, the eight solutions
      
     
such as HNO
3
, HCl, acetone, methanol and ethanol
       
       
      
       

  
(3-triphenylphosphonio-propane-1-sulfonate;
C
21
H
21
O
3
PS; CAS N

1).
2.3. Synthesis of Nano activated carbon (NAC)

        
        
     
       
      
      
(porous).

and placed in the porcelain crucible, then

for 2.0 hours. By decreasing temperature
up to 25
o
C, the product is ready for weight.
     
heating method caused to create
the Nano
     .


  

min; hold: 1h) in a tube furnace and cooling
down to room temperature under N
2


-1
) [25,26].
2.4. Characterization
     
      
      
      
the sorbent including surface area, pore volume, and
      
   
mini porosimeter (Bell Japan, Inc.). Prior to analysis,
the samples were degassed under vacuum at 300


of the sorbents were calculated by the Brunauer-
   




      
of sorbent was examined by transmission electron

2.5. Benzene Extraction Procedure
By procedure, 10 mg of NAC and 0.1 g of ionic liquid


up to 55
o


of       
vial, 1 g of powder samples (soil, vegetables) were
placed in the bottom of vial and were closed in glass
 

o

soil and vegetables samples which were vapored/
       
 
        

        





calibration curve was calculated and evaluated.
Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
71
3. Results and Discussion
3.1. FTIR of ACNPs
   
NAC
was shown in
.
-1
was related to the

cm
-1

-1
were related to asymmetric and
symmetric C–H stretching vibration of CH
2
bond.
       
 at 1710 cm
-1

-1

1613 cm
-1

     
   
-1
to

-1
belonged to
C-H and CH=CH
2
vibrations in aromatic rings.
Fig.1. 

5001000150020002500300035004000
% Transmitance
Wavenumber (cm
-1
)
O-H
C-H
C=O
C=C
C-O
Fig.2.

NAC

72
3.2. SEM and TEM of NAC
     
morphological study of prepared
NAC


NAC
sample was
shown in
NAC

     
      
distribution and average pore diameter, ).

NAC
appeared to have many different
       
been destroyed and a dense porosity was formed
   
structure of
NAC

      clearly
      
morphology, and the image with 50 nm scale
     
layers and porous structure.
3.3. Optimization of benzene extraction
All effected parameters such as the sorbent mass,



absorbed/extracted from 1 g of soil and vegetables

3.3.1. The effect of NAC and IL amount


between 0.1- 3.0 mg g


    
       
    

showed the high recovery for soil/food /vegetable

       
procedure. So, 10 mg of NAC and 100 mg of ionic
        
       


3.3.2.The effect of temperature
      
     
    
         

o
C in batch system
for 10 min. After 10 min, extra time had no effect

      
o
C
      
Fig.3a.

NAC
sample
Fig.3b.

NAC
sample
Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
73
  
o
C was selected as optimum temperature for
.


at 200
o
C in presence of N
2

programming of oven was adjusted between 50-
        
decreasing temperature less than 60
o
C, the recovery


     
o
C and
then the temperature in batch system reduced up to
50
o

probe was desorbed and determined by introducing to

      

-1


were separately achieved at 72.6 mg g
-1

g
-1
, respectively. So, in dynamic system, the values


Fig. 4. 
based

soil/food /vegetable samples

Fig. 5. 
in
soil/vegetable samples



74
3.3.3.The effect of reaction time


        
and favorite temperature the reaction time between
     
     


o

o
C,



physical adsorption of NAC. On the other hand,
  
interaction and best recovery was obtained for 10

o
C.
3.3.4.The effect of different ionic liquids
       
extraction from soil and vegetables was evaluated.
       

as (3-triphenylphosphonio-propane-1-sulfonate;
C
21
H
21
O
3
PS) were mixed with NAC and dilution

was vapored at 55
o
    
      
     
    
results showed that the tri-phenyl of [PPP][S]
     
     
aromatic cycles as compared to rings
    


conditions which was shown in .
3.3.5.Validation in real samples
    
    
      


-1

for validation of methodology and the probe
of         
25 number of soil, vegetables powders (rice,
cabbage, spinach) and standard solution of
        
were closed in the glass vial, tightly. All samples
       

      .
     
Fig. 6. 
in
soil/food /vegetable samples


Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
75
Table 1.  based on for

Samples Benzene std. (mg L
-1
) *Found Method (mg L
-1
) Recovery (%)
A-Soil ----  ----
2.0 4.40 ± 0.23 
B-Rice ----  ----
0.5 1.35 ± 0.06 102.2
C-Cabbage ---- 1.32 ± 0.07 ----
1.0  
 ---- 0.76 ± 0.04 ----
0.5 1.24 ± 0.07 
 ----  ----
2.0  
*

Table 2.  based on 

Samples Benzene std. (mg L
-1
) *Found Method (mg L
-1
) Recovery (%)
A-Soil ----  ----
1.5  
B-Rice ----  ----
0.5 1.07 ± 0.05 
C-Cabbage ----  ----
1.0  102
 ---- 0.52 ± 0.03 ----
0.5 1.01 ± 0.07 
 ---- 1.27 ± 0.12 ----
1.5  
*

     
       

accuracy and precision, which indicated the ability
     
  





.

76
4. Conclussions
      
      
soil, and vegetables powders by 
procedure. Based on results, the simple, fast,
sensitive and accurate results based on NAC/
     
     

       the
amount of , the amount of soil and

and time    
the maximum adsorption capacity of 127.2 mg
g
-1
,
72.6 mg g
-1
 mg g
-1



      
soil/vegetables samples were more than NAC and
 
     

environmental samples.
5. Acknowledgments
       




6. References
         
manufacturing conditions on the VOCs
emissions of particleboard, Bioresour., 15

         
  
method for VOCs emission sources to



     
sources, atmospheric transport, and human
health effects, international encyclopedia of


      
    
    

analysis, J. Natl. Cancer Inst., 104 (2012)
1724-1737.
       
    
    
(vinyl alcohol)/cellulose acetate blended
    

        

Table 3.  based on 

Samples GC-MS (mg L
-1
) *Found Method (mg L
-1
) Recovery (%)
A-Soil  2.42 ± 0.12 
B-Rice   102.4
C-Cabbage 1.35 ± 0.06 1.34 ± 0.07 
  0.76 ± 0.05 
   
*

Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
77
S. Jheon, Analysis of volatile organic
compounds in exhaled breath for lung
cancer diagnosis using a sensor system,


 
     
compounds from patients and cell lines for

proton-transfer-reaction mass spectrometry,

 
Searching for selected VOCs in human


       

biosensor technology: a review, J. Pharm.

    

     

[11] International Agency for Research on Cancer
(IARC) monographs on the evaluation
     

       
    



       
     
      
combining non-thermal plasma, adsorption,
     

 
    
     
     

      
    

    
by static head space gas chromatography
 
Chem. J., 3 (1) (2020) 17-26.
      
     

    
cyclic adsorption/desorption of organic

     
  
    
     
aqueous environments by cupric oxide

J. Chem., 2017 (2017) 1-10. https://doi.

          
   
    
for adsorption of organic pollutants in
water and volatile organic compounds in air,

    
   

air based 
    tube-headspace
solid-phase extraction procedure, Int. J.


 

light driven thermocatalytic activity for

      
503.
      

Activated carbon prepared by physical
activation of olive stones for the removal
of NO
2
at ambient temperature, Comptes



 
on impregnated carbon nanotubes, Ain

   
Air pollution   
     
heterogeneous 
from air by solid phase gas extraction, Arab.
J. Chem., 13 (2020) 1741-1751.
         
      
    
on carbon nanotubes, RSC Adv., 4 (2014)

 
of epoxy resin-based activated car-bons
from waste printed circuit boards by steam


   


carbon by microwave heating, Carbon,
42 (2004)1315-20.
Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78