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Agency (EPA), benzene is one of the primary 
pollutants that adversely affects human health [6] .It 
is a serious health problem, causing several human 
diseases such as cancer, central nervous system 
disorders, leukemia, respiratory problems, skin 
and eye diseases [7-9]. Considering these health 
concerns and based on U.S.EPA announcement, 
the standard level of benzene in drinking water 
should not exceed 5 μg-l [6]. Therefore, it is crucial 
to remove this pollutant from water supplies, 
especially surface water, and ground waters. Since 
their discovery by Iijima et al in 1991 [10], Carbon 
nanotubes (CNTs) have been in a major area of 

Extraction and determination of benzene from waters and 
wastewater samples based on functionalized carbon nanotubes 
by static head space gas chromatography mass spectrometry

1. Introduction
Benzene is a chemical aromatic and flammable 
compound which is a natural component of 
petroleum-derived products. It is one of the most 
highly used groups of raw materials and solvents 
in numerous chemical synthesis processes, and 
manufacturing industries [1-3] .The presence 
of benzene in groundwater is due to petroleum 
product’s leakage into water sources and leaking 
underground storage tanks and pipelines [4, 5]. 
According to the US Environmental Protection 
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A B S T R A C T
Removal of benzene, as hazardous pollutants from waters and 
wastewater is a main problem of environment contamination due to 
high risk factor in human health. In this study, the phenyl sulfonic acid 
(PhSA) modified carbon nanotubes (CNTs) were used for benzene 
removal from waters by dispersive micro solid phase extraction method 
(D- μSPE). Due to adsorption mechanism, the polar–π and π–π electron 
donor–acceptor interactions was provided between the aromatic ring 
of benzene with the surface sulfonic acid groups (SO3H) and phenyl 
ring (-C6H5) of CNTs, respectively. Therefore, 20-100 mg of sorbent, 
concentration of benzene (0.1–10 mg L-1), pH (1-12) and contact time 
(5–120 min) were investigated and optimized for benzene removal 
from water samples in static system. The concentration of benzene 
in water was determined by static head space gas chromatography 
mass spectrometry (SHS-GC-MS). The results showed, the Langmuir-
Freundlich (LF) isotherm provided the best fit for benzene sorption. 
By using the Langmuir model, the maximum adsorption capacity of 
157.34 mg g-1 and 22.86 mg g-1 was achieved for benzene removal 
from waters with CNTs@PhSA and CNTs, respectively. The method 
was validated by certified reference material in waters.
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interest within many contexts, especially in water 
treatment. CNTs are graphitic carbon sheets folded 
into hollow cylinders with diameters and lengths 
in nanometer and micrometer scales, respectively 
[11-13]. Unique properties of CNTs including 
hydrophobicity, high specific surface area, hollow 
and layered structure and existence of π-electrons 
on their surface make them superior adsorbents for 
removal of contaminants [14-16]. Some studies put 
further steps and investigated the effect of CNT’s 
modification on their adsorption performance. Lu 
et al. showed that NaOCl-oxidized CNTs have 
significant adsorption capacity in comparison 
to other types of carbon adsorbents [17]. Su et al 
conducted a research in which multiwalled carbon 
nanotubes were oxidized by sodium hypochlorite 
solution and turned to a new adsorbent with 
enhanced adsorption performance [18]. These 
studies show high affinity of CNTs toward organic 
compounds, and open new avenue for developing 
carbon nanotube technologies to treat benzene and 
other organic chemicals in water. However, there is 
a high number of CNTs that can be used to remove 
benzene from water supplies and which subtype of 
CNTs family can have the most effective adsorption 
capacity, is still unknown. To our knowledge, so 
far, there is no data about the adsorption capacity 
of phenyl sulfonic acid (PhSA) modified hybrid 
carbon nanotubes (CNTs). Therefore, the main 
objective of this study is using phenyl sulfonic 
acid (PhSA) modified hybrid carbon nanotubes 
(CNTs) to remove benzene from water sources by 
dispersive solid phase extraction method.

2. Experimental
2.1. Material and methods
Gas chromatography based on mass detector 
(GC-MS) and air sample loop injection (ASL) 
was used for benzene determination by static 
head space accessory (SHS-GC-MS, Netherland). 
The headspace may be sampled using a gas tight 
syringe of appropriate volume. Gas-tight syringe 
(GTS) was used for determination VOCs1 from 
water samples by shaking and heating samples. 

1- Volatile organic compound

The auto-sampling of GTS units can retrofit to a 
standard GC with a split/split less injector. The 
GTS auto-sampler is beneficial for use with diverse 
samples. The Agilent 7890A GC can accommodate 
up to three detectors identified as front detector, 
back detector, and auxiliary detector. This model 
of GC design with three detectors in front, back, 
and auxiliary (FID, TCD, MS) and equipped 
with a split injector with poly di-methyl siloxane 
column (Table 1). The mass detector chosen was 
selected for benzene analysis in gas/liquid. Before 
injection, Slide the plunger carrier down until it is 
completely over the syringe plunger, and tighten 
the plunger thumb screw until finger- tight. The 
injector temperature was adjusted to 190°C and 
the detector temperature at 240°C. The GC oven 
temperature was programmed from 25°C to 250°C 
which was held for 12 min. Hydrogen(Cas number: 
1333-74-0) as the carrier gas was used at a flow rate 
of 1.0 mL min–1. The scanning electron microscopy 
(SEM) and Raman spectra were recorded by 
electron microscopy and spectrometer of CNTs@
PhSA (Bruker). Fourier transformed infrared 
spectroscopy (FTIR, IR-200 Thermo-Nicolet 2.2) 
in KBr in the range 400–4000 cm–1 was used to 
confirm the covalently bound benzenesulfonic 
acid (CAS N: 98-11-3) group on the CNT surface. 
Transmission electron microscopy (TEM, Philips) 
with a conventional 15 kV electron microscope was 
used to analyze the surface morphology of CNTs@
PhSA. X-ray diffraction (XRD; Panalytical) was 
used for XED patterns with wavelength 0.15405 
nm for CNTs@PhSA. The intensity was measured 
by step scanning in a 2θ range of 5–80°. Benzene 
(CAS N: 71-43-2; C6H6) purchased from Sigma 
Aldrich. Five calibration solutions of benzene were 
prepared and the approximate concentrations of 
benzene were 0.1, 0.2, 0.5, 1.0, 5,0 and 10 mg L-1. 
The other chemicals with high purity (99%) were 
purchased from Sigma (Germany). The analytical 
grade solvents such as benzene, chloroform, (CAS 
N: 67-66-3), 4-benzenediazoniumsulfonate (CAS: 
305-80-6), acetone (CAS N: 67-64-1),, HNO3 

(CAS N:7697-37-2), HCl (CAS N: 7647-01-0), 
H2SO4(CAS N: 7664-93-9), acetic acid (CAS N: 
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64-19-7) and NaOH (CAS N:1310-73-2) were 
also from Merck.CNTs@PhSA was synthesized in 
RIPI laboratory, Iran. Ultrapure water (18 MΩ·cm) 
was obtained from Millipore continental water 
system (Millipore, USA). Samples of water and 
wastewater collected in polyethylene bottles were 
filtered through Millipore cellulose membrane 
filter (0.45 µm porosity) to remove suspended 
particulate matter.

2.2. Synthesis of phenyl sulfonic acid modified 
hybrid carbon nanotubes 
High-purity CNTs were synthesized by use of 
camphor, an environmentally friendly hydrocarbon 
as a carbon source using chemical vapor deposition 
method on Co‒Mo/MgO nanocatalysts. The 
nanocatalyst was synthesized by sol-gel method. 
HCNTs were grown at temperatures of about 
900‒1000oC in 45‒60 min. Concentration of active 
metals was 5‒10%. The nanocatalyst (Co‒Mo/
MgO) was prepared by our special sol-gel method 
[19]. For functionalization of CNTs with phenyl-
SO3H (CAS N: 98-11-3) group, CNTs surface 
was activated by 50% HNO3 (CAS N: 7697-37-
2) for 1 h and washed with ultrapure water many 
times. The diazotization reaction was used for 
functionalization as follows; 0.03 mol of sulfanilic 
acid CAS N: 121-57-3) was dispersed in 300 mL 
of 1 M HCl (7647-01-0) in a three-necked ground 
flask [20]. The flask was kept in an ice water bath 
and the temperature controlled around 3ºC under 
stirring. Then, 33 mL of 1 M NaNO2 (CAS N: 
7632-00-0) was added dropwise into the mixture 
and stirred for 1 h at the same temperature. The 
resulting precipitate was filtered and washed 

with deionized water. In the following step, 5 g 
of 4-benzenediazonium sulfonate and 180 mg of 
activated CNTs were added into 120 mL of mixture 
of water and ethanol (1:1, v/v) at 3°C. Subsequently, 
60 mL of H3PO2 aqueous solution (50 wt.%) was 
added to the mixture and stirred for 30 min. After 
this time, another 60 mL of H3PO2 (CAS N: 6303-
21-5) was added and stirred for 1 h. The resulting 
mixture was washed with deionized water and 
dried overnight in an oven at 80°C (Fig. 1). 

2.3 Extraction Procedure 
The CNTs@PhSA nanostructures based on D-μSPE 
method was used for extraction of benzene from 
waters (Fig. 2). First, 10 mg of CNTs@PhSA or 

Table 1. The conditions of GC-MS for determination 
benzene

ConditionsGC-MS
Agilent, 7890A
0.1-20 ng

Model
Sensitivity 

1-5 μL; 10:1 splitInjection Volume
2:1Split ratio
30 meter, 0.32mm x 0.25μmColumn
220 °CTemperature Injector
230 °CDetector FID
25 to 100 °C at 25 °C per minProgram , time= 5.0 min
N2, 1 mL min-1Carrier Gas 

60°CColumn Oven Pressure 
Pulse

6 ml min-1Column Flow 
8.153 (min)Retention Time
19.125 (min)Run Time (Min)
30 (mL min-1)Flow Rate N2

34(mL min-1)Flow Rate H2 
1-5μLInjection size 
200-400(mL min-1)Flow Rate  air

2:1 Split ratio 
30 meter, 0.32mm x 0.25μm Column 
220 °C Temperature Injector 
230 °C Detector FID 
25 to 100 °C at 25 °C per min Program , time = 5.0 min 
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60°C Column Oven Pressure Pulse 
6 ml min-1 Column Flow  
8.153 (min) Retention Time 
19.125 (min) Run Time (Min) 
30 (mL min-1) Flow Rate N2 
34(mL min-1) Flow Rate H2  
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200-400(mL min-1) Flow Rate  air 
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CNTs nanostructures was put on 5 mL of water 
samples with different benzene standard solution 
(0.1--10 mg L-1) in GC vial. The mixture shacked 
for 10 min by magnetic shaker accessory (MSA) 
and after centrifuging for 3 min (3500rpm), the 
solid phase separated from liquid phase and finally 
the benzene concentration in water sample was 
determined by static head space gas chromatography 
mass spectrometry (SHS-GC-MS). After 
extraction, the recoveries were calculated with 
the ratio of initial/final concentration of benzene 
in vial GC by SHS-GC-MS (Eq. A). In addition, 
adsorption capacity and removal efficiency (RE) 
was calculated by equation Eq. B and Eq. C. X 
is the initial concentration of benzene in solution 
and Y is final concentration of benzene which 
determinate by SHS-GC-MS in water samples. The 
adsorption capacity (AC) of benzene (mg g-1) and, 
the removal efficiency of benzene (%) was shown 
in Eq. B and Eq. C. The Ci (mg L-1) and Cf (mg L-1) 
are the concentration of benzene before and after 
extraction procedure, Vs (L) is the sample volume, 
and mass (g) is the amount of CNTs@PhSA. 

The CNTs@PhSA nanostructures based on D-μSPE method was used for extraction of benzene from 
waters (Fig.2). First, 10 mg of CNTs@PhSA or CNTs nanostructures was put on 5 mL of water samples 
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3.1. Characterization
Figure 4 (a, b) showed the SEM and TEM images 
revealed the CNTs@PhSO3H consist of randomly 
aggregated and crumpled thin tubes which are 
closely associated with each other forming a 
disordered solid, and it can be inferred that the 
functionalization process does not change the 
general structure of HCNTs. The FTIR spectrum of 
the CNTs@PhSO3H sample showed the O=S=O, 
OH as a broad peak, C=C and C-S bond which 
was confirmed the SO3 bond in CNTs (Fig. 5). 
Raman spectroscopy is a useful technique for 
the characterization of carbon nanotubes quality. 
Raman patterns of CNTs@PhSO3H confirm the 
presence of CNTs (Fig. 6) and XRD image showed 
the hexagonal structures in CNTs@PhSO3H. After 
the attachment of SO3H groups on the carbon 
wall of CNTs the three peaks which confirms the 
functionalization of SO3H on CNTs@Ph have not 
any changes on the structure of CNTs (Fig. 7). 
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Fig.3. Mechanism of extraction of benzene with CNTs@PhSO3H 
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3.2. Optimization parameters
The D-μ-SPE procedure based on CNTs@PhSO3H 
nanocomposite was used for extraction of benzene 
from well water and wastewater samples. The main 
effectiveness parameters such as, pH, amount of 
CNTs@PhSO3H, volume of waters, adsorption 
capacity of sorbent were evaluated and studied. 
The pH sample is critical parameters and must be 
optimized. High adsorption of benzene from water 
samples based on CNTs@PhSO3H nanocomposite 
depended on pH solution which was extracted 
by D-μ-SPE methods. The pH range (1-12) was 
adjusted with buffer solution and the extraction 
efficiency of benzene in water samples was 
evaluated by benzene concentration (0.1-10 mg 
L-1) and 10 mg of CNTs@PhSO3H. The results 

showed, the recovery of extraction for benzene was 
decreased at acidic and basic pH ranges. Therefore, 
pH of 5.5-7.5 was selected as optimized pH for 
benzene extraction in waters (Fig. 8).
 By D-μ-SPE method, the amount of on CNTs@
PhSO3H nanocomposite was studied for 5 mL 
of water and wastewater samples. So, 1-20 mg 
of CNTs@PhSO3H and CNTs was examined by 
proposed procedure. The results showed us, benzene 
in water samples can be efficiently extracted with 
8 mg CNTs@PhSO3H in optimized pH=7. So, 10 
mg of CNTs@PhSO3H nanocomposite was used 
as optimum mass for benzene extraction in waters 
(Fig. 9). 
 The sample volume (SV) in important factor 
and must be studied. So, the effect of sample 
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Fig. 7. XRD image of hexagonal structures in CNTs@PhSO3H 
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volume on benzene extraction in waters examined 
at optimized conditions. Due to procedure, the 
different water volumes between 1-10 mL with 10 
mgL-1 of standard benzene solution were selected 
for benzene extraction by D-μ-SPE methodology. 
As magnetic shaking for 10 min, high recovery 
obtained for 10 mL of waters. Therefore, 5 mL of 
sample volume selected for further work (Fig. 10).
 The validation methodology based on spiking 
well water and wastewater samples was achieved 
by concentration of standard benzene solution 
from LLOQ as 0.1 mgL-1 and ULOQ as 10 mgL-

1 by optimized conditions (Table 2). All samples 
analyzed by static head space gas chromatography 
mass spectrometry (SHS-GC-MS).

3.3. Discussion
This study set out with the aim of assessing the 

modification of CNTs with phenyl sulfonic acid 
group and its effect on the extraction efficiency of 
benzene in water samples. According to our results, 
it is revealed that compared to CNTs, CNTs@PhSA 
significantly adsorbs benzene in water. As table 3, 
the results showed us the proposed method based 
on CNTs@PhSA had more efficient extraction of 
benzene from waters than CNTs sorbents which 
was presented by different authors [21-26]. Also 
the comparing of adsorption capacity(AC) of 
CNTs@PhSA (157.34 mg g-1) with other sorbents 
such as CNTs (22.86 mg g-1), CuO-NPs (100.24  
mg g-1), GO/MOF-5 (77 mg g-1) , ZIF-8/GO(123 
mg g-1) and GO (158 mg g-1) showed, the value of 
AC was near or more than others [27-30]. Osanloo 
at el was used graphene modified by ionic liquid 
(NG-IL) for toluene removal [31].

Table 2. The validation methodology based on CNTs@PhSO3H by SHS-GC-MS
samples Added   (mgL-1 ) *Found (mgL-1 ) Recovery (%)
Well Water ------- 0.43 ± 0.02 -------

0.5 0.94 ± 0.03 102

Paint Wastewater ------- 14.16± 0.68 -------

15 28.87± 1.26 98.1

Oil-Factory Wastewater ------- 38.12± 2.15 -------

40 76.82± 3.75 96.8
* Mean of three determinations ± confidence interval (P = 0.95, n = 10)

Table 3.  Comparing of dispersive micro solid phase extraction method based on CNTs@PhSA for benzene extraction 
from water samples with other published methods

This Study Relevant Studies
In this study, phenyl sulfonic acid group was 
used for modification of CNTs in order to extract 
benzene from water samples.

CNTs have the capacity to be attached by functional groups. These 
functional groups can change physical and chemical properties of 
carbon nanotubes [21].

We prepared a range of benzene concentration 
including 0.1, 0.2, 0.5, 1.0, 5.0, 10 mg/L

Optimum benzene concentration for the investigation of CNTs 
adsorption efficiency in benzene removal procedure is 10 mg/L [22].

Contact time performed in this study was 10 min. The mixture of CNTs and sample have been shaked for 10 minutes 
[22].

Extraction of benzene in waters by sandwich or T 
shaped π–π bonding.

Molecular torsion balance, developed by Wilcox et al. representing 
a closed model with a T-shaped π–π interaction [23, 24].

 SEM and TEM images revealed that the CNTs@
PhSO3H consists of randomly aggregated and 
crumpled thin tubes.

CNTs accumulation leads to pores formation which can create a 
bunch of adsorption sites on them [25].

 Addition of SO3H on CNTs@Ph had no change 
on the structure of CNTs.

According to SEM images of H2SO4-treated CNTs, there is no 
change in the morphology and structure of CNTs [21].

pH optimization in the range of 5.5-7.5 benzene 
extraction from water samples

When pH exceeds 6.2, the adsorption efficiency increases 
significantly [26].
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4. Conclusions
The main goal of the current study was to 
determine the effect of phenyl sulfonic acid group 
functionalization on the adsorption efficiency of 
CNTs for benzene removal in water samples. The 
adsorption mechanism is referred to the polar-π and 
π-π interaction between aromatic ring of benzene 
and surface sulfonic acid group as well as phenyl 
ring. Surprisingly, hexagonal structure of CNTs@
PhSA indicated no change in the basic structure 
of CNTs, after functionalization with SO3H. 
However, the adsorption capacity of CNTs@
PhSA for benzene removal was significant. These 
findings suggest that in general, CNTs are capable 
of being modified and therefore, they represent a 
critical role in the adsorption of benzene and other 
pollutants. All concentration benzene in waters 
determined based on D- μ-SPE procedure by SHS-
GC-MS. Under optimal conditions, adsorption 
efficiency of CNTs@PhSA and CNTs was obtained 
97.7% and 20.6 % for benzene removal from water 
samples, respectively.
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