
1. Introduction
Micellar electrokinetic chromatography (MEKC) is 
a widely used technique in capillary electrophoresis 
(CE) and is capable of separating neutral compounds 
as well as charged solutes by including a pseudo-
stationary phase [1-6]. This technique has great 
utility in separating mixtures that contain both ionic 
and neutral species, and has become a valuable tool 
in separating very hydrophobic pharmaceuticals 
from their very polar metabolites. The creation of 

the pseudo-stationary phase is most easily achieved 
using micelles of surfactants and depending on the 
hydrophobicity, analytes partition between these 
micelles and the mobile phase. The significant features 
of MEKC are the availability of a wide range of pseudo-
stationary phases that provide unique selectivities for 
peptides and feasibility of manipulating the comparison 
of the pseudo-phases since it is a completely solution-
based technique. Therefore, selectivity in MEKC can 
be varied by altering the nature of the micelles [6-8].  
This could be achieved by altering the surfactant and 
changing the size, charge or geometry of the micelles. 
It is shown that not only the predominant hydrophobic 
interaction but also other important solute-micelle 
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interactions such as electrostatic and hydrogen bonding 
could manipulate the separation. In most MEKC 
studies, sodium dodecyl sulphate (SDS) which is an 
anionic micelle has been successfully used to separate 
the hydrophobic and cationic analytes. An important 
parameter for the separation of the peptides and 
modeling of the electropherograms in CE and MEKC 
is their mobilities. This parameter can be converted 
to migration time and then electropherograms can 
be simulated using gaussian function. A long-range 
goal of our laboratory is developing experimental 
and theoretical methods for peptide separations, and 
mapping two-dimensional MEKC-CZE schemes. 
Reaching this goal requires an in-depth understanding 
of the effects of different factors on the CZE and 
MEKC peptide mobilities. Quantitative models such as 
quantitative structure-mobility relationships (QSMR) 
can help us to gain this knowledge. We have started 
with the prediction of electrophoretic mobilities of 125 
peptides using CZE technique [9]. A QSMR model has 
been developed using Offord’s charge-over-mass term 
(Q/M2/3) together with the corrected steric substituent 
constant (ES,C)and molar refractivity (MR) as 
descriptors. The latter two parameters, account for 
the steric effects and bulkiness of amino acid side 
chains, respectively [9]. The robustness of this work 
was shown by artificial neural network (ANN) 
modeling of the mobilities of 102 larger peptides – up 
to 42 amino acid residues – that also included highly 
charged and hydrophobic peptides [10]. Besides, to 
explore the utility of the ANN model in simulation of 
peptide maps, the profile for the endoproteinase digest 
of the melittin, glucagon and horse cytochrome C, 
was also studied in the latter work [10]. We intended 
to examine the same route for the MEKC modeling 
as we did for the CZE. Therefore, the main aim of the 
present work was the determination of the mobilities 
of a set of small peptides – up to 14 amino acid residues 
– using MEKC and then modeling the mobilities by 
applying different chemometric techniques. Artificial 
neural networks (ANNs) are among the most 
popular methods for modeling of the linear/nonlinear 
phenomena [11]. ANN-based approaches have the 
ability of modeling the complex data without the 
need for a detailed understanding of the underlying 

phenomena. Back propagation (BP) learning rule is 
the most popular learning algorithm adopted in neural 
network technology. Hence in the present research, 
a back-propagation of error artificial neural network 
(BP-ANN) was used to predict the mobilities of 128 
peptides obtained using MEKC with SDS micellar 
system. However, the main problem in developing the 
ANNs, is the selection of suitable descriptors for their 
inputs. This is especially serious when the mechanism 
of the phenomenon is complex or unknown. In 
order to overcome this problem one needs to use a 
powerful method for the feature selection. Therefore, 
in the present work we have chosen adaptive neuro-
fuzzy inference system (ANFIS) for selecting the 
most effective parameters on MEKC mobilities. This 
method is capable in dealing with linear and nonlinear 
phenomena. Success in modeling of the electrophoretic 
mobilities of peptides using MEKC, together with our 
previous achievements in modeling of CZE mobilities 
might pave the way for developing and predicting the 
two-dimensional MEKC-CZE maps of peptides.

2. Experimental 
2.1. Chemicals and Materials 
Sodium dodecyl sulfate (SDS), decanophenone, sodium 
phosphate monobasic (NaH2PO4.H2O), hexanol, and 
peptides were obtained from Sigma Chemical Co. (St. 
Louis, MO). Different concentrations of 40, 60 and 80 
mM SDS were prepared in 20 mM phosphate buffer 
at pH 7 with 1.15 % (v/v) hexanol. The solutions 
were filtered through 0.2 μm acrodisc filter (STRL, 
Eatontown, NJ) before use. All experiments were 
carried out on a home-built CE system comprised 
of a 0-30 kV high voltage power supply (Series EH, 
Glassman High Voltage, Inc., White house Station, 
NJ). Fused silica capillary (Polymicro Technologies, 
Phoenix, AZ), with an inner diameter of 50 μm and 
an outer diameter of 375 μm was used. The total 
capillary length and the length from the inlet to the 
detector were 71 and 47 cm, respectively. A circulating 
mineral oil bath was used to maintain the temperature 
of the two buffer reservoirs and the capillary at a 
designed temperature in this experiment. A positive 
voltage of 25 kV was applied during the experiments. 
A variable-wavelength UV detector (Model 200, 
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Scientific System, Inc., State College, PA) was used, 
and a wavelength of 214 nm was set in this work. 
The chromatograms were collected using acquisition 
software written in LabView (Austin, TX). Before 
any injection was made, the untreated capillary was 
conditioned by rinsing with deionized (DI) water for 
20 minutes, sodium hydroxide dissolved in methanol 
for 10-12 minutes, DI water for 20 minutes and finally 
with the buffer for 15 minutes. The capillary was 
vacuum rinsed with the buffer solution between each 
injection. 

2.2. Determination of mobility by measurement of 
migration time of peptides

Electrophoretic mobility at a micelle concentration 

can be determined from the migration times using 
equation 10 [2,20]:











−=

ttV
LL

or

dt 11µ   (10)   
 

where Lt is the total length of the capillary, Ld is 
the separation length (from the upstream end of the 
capillary to the detection window). V is the applied 
voltage. tr is the retention time of a solute at a given 
micelle concentration, and to is the retention time 
of an unretained solute. The determined mobility 
values of peptides in 40, 60 and 80 mM SDS 
solutions together with the peptides studied in this 
work are shown in Table 1.
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Table 1. The values of electrophoretic mobilities of peptides using MEKC with different SDS concentrations 
together with the calculated values of descriptors

Descriptors Mobility
# Peptide ES,C MRn ln(N) Kappa(H)

SDS 80 
mM

S D S 
60mM

S D S 
40mM

1 ALYL -0.70 5.65 0.69 0.67 -6.38 -6.10 -5.73
2 GY -0.50 1.03 0.69 0.46 -6.49 -5.55 -4.31
3 AY -0.70 5.65 0.69 0.67 -6.88 -6.23 -4.76
4 ASTTTNYT -3.88 5.65 2.08 -0.22 -8.71 -7.36 -5.15
5 VY -1.79 14.95 0.69 1.09 -8.74 -8.13 -6.60
6 YV -1.79 31.83 0.69 1.09 -10.04 -9.60 -8.58
7 YA -0.70 31.83 0.69 0.67 -10.17 -9.30 -8.12
8 GGF -0.30 1.03 1.10 1.06 -10.92 -9.61 -7.10
9 GF -0.50 1.03 0.69 1.06 -12.09 -10.49 -8.30
10 YY -1.40 31.83 0.69 0.92 -12.16 -11.49 -9.88
11 YG -0.50 31.83 0.69 0.46 -12.23 -10.71 -8.12
12 IY -2.31 19.59 0.69 1.41 -12.86 -11.42 -8.88
13 AF -0.70 5.65 0.69 1.27 -13.18 -11.25 -7.89
14 HY -1.36 23.79 0.69 0.90 -13.20 -11.63 -8.66
15 YI -2.31 31.83 0.69 1.41 -13.52 -11.70 -9.80
16 LY -1.94 19.59 0.69 1.40 -13.60 -11.97 -8.53
17 YGG -0.30 31.83 1.10 0.46 -16.03 -14.47 -11.45
18 FA -0.70 30.01 0.69 1.27 -16.43 -14.56 -11.52
19 FV -1.79 30.01 0.69 1.69 -16.43 -14.65 -11.79
20 YL -1.94 31.83 0.69 1.40 -16.72 -15.05 -11.45
21 GW -0.46 1.03 0.69 1.01 -16.79 -14.85 -10.49
22 AW -0.66 5.65 0.69 1.22 -17.89 -15.65 -11.99
23 VF -1.79 14.95 0.69 1.69 -19.52 -16.75 -12.04
24 YAG -0.50 31.83 1.10 0.67 -19.89 -17.00 -12.17
25 YYY -2.10 31.83 1.10 1.38 -20.00 -18.09 -13.31
26 WS -0.94 39.81 0.69 0.90 -20.57 -18.21 -13.89
27 FG -0.50 30.01 0.69 1.06 -21.47 -18.60 -15.43
28 PW -0.66 13.95 0.69 1.56 -21.78 -17.65 -13.05
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29 VW -1.75 14.95 0.69 1.64 -22.08 -19.31 -13.51
30 FI -2.31 30.01 0.69 2.01 -22.10 -19.09 -15.68
31 WD -1.44 39.81 0.69 1.45 -22.22 -22.25 -19.11
32 DF -1.48 11.58 0.69 1.50 -22.54 -22.18 -21.82
33 WA -0.66 39.81 0.69 1.22 -22.60 -19.65 -14.85
34 DLFL -1.48 11.58 0.69 1.50 -23.16 -22.61 -21.64
35 FM -1.53 30.01 0.69 1.66 -23.23 -20.79 -15.57
36 GGFM -1.13 1.03 1.39 1.66 -23.74 -20.27 -14.12
37 WV -1.75 39.81 0.69 1.64 -23.83 -20.62 -16.14
38 FGG -0.30 30.01 1.10 1.06 -24.86 -22.50 -16.57
39 YGGF -1.00 31.83 1.39 1.52 -25.14 -23.13 -15.69
40 EW -1.28 16.23 0.69 1.43 -25.54 -22.75 -21.33
41 YW -1.36 31.83 0.69 1.47 -25.54 -21.90 -18.32
42 YYL -2.64 31.83 1.10 1.86 -25.68 -23.87 -16.44
43 DW -1.44 11.58 0.69 1.45 -25.77 -22.99 -21.18
44 MW -1.49 23.12 0.69 1.61 -25.77 -21.96 -18.07

Descriptors Mobility
# Peptide ES,C MRn ln(N) Kappa(H)

SDS 80 
mM

SDS 60 
mM

SDS 40 
mM

45 WE -1.28 39.81 0.69 1.43 -26.89 -21.82 -18.29
46 FL -1.94 30.01 0.69 2.00 -28.13 -25.32 -18.93
47 WG -0.46 39.81 0.69 1.01 -28.40 -25.57 -19.98
48 IW -2.27 19.59 0.69 1.96 -28.84 -25.41 -18.06
49 IF -2.31 19.59 0.69 2.01 -29.15 -25.04 -19.64
50 PPGFSP -0.78 13.95 1.79 2.60 -29.19 -25.75 -17.08
51 GGFL -1.54 1.03 1.39 2.00 -29.26 -26.34 -19.32
52 WM -1.49 39.81 0.69 1.61 -29.56 -26.25 -20.98
53 LF -1.94 19.59 0.69 2.00 -31.16 -28.17 -20.70
54 WP -0.66 39.81 0.69 1.56 -31.20 -27.36 -21.35
55 KF -1.32 25.05 0.69 2.20 -31.69 -29.11 -21.43
56 YPF -1.40 31.83 1.10 2.07 -31.97 -28.32 -20.78
57 WY -1.36 39.81 0.69 1.47 -32.60 -26.46 -20.86
58 LLWL -1.90 19.59 0.69 1.95 -32.61 -28.95 -22.63
59 FF -1.40 30.01 0.69 2.12 -32.72 -29.83 -22.99
60 FLFL -1.40 30.01 0.69 2.12 -32.84 -30.44 -23.48
61 KLFL -1.32 25.05 0.69 2.20 -32.87 -30.20 -21.63
62 LW -1.90 19.59 0.69 1.95 -33.11 -29.65 -21.60
63 GLF -1.74 1.03 1.10 2.00 -33.96 -31.49 -23.70
64 WGG -0.26 39.81 1.10 1.01 -34.06 -30.35 -24.09
65 GFL -1.74 1.03 1.10 2.00 -34.55 -31.48 -24.40
66 FW -1.36 30.01 0.69 2.07 -35.09 -32.21 -26.14
67 YGGFM -1.83 31.83 1.61 2.12 -35.13 -31.37 -22.40
68 WL -1.90 39.81 0.69 1.95 -35.27 -31.65 -25.71
69 MLF -2.77 23.12 1.10 2.60 -35.62 -32.99 -26.10
70 WGY -1.16 39.81 1.10 1.47 -36.11 -32.72 -26.61
71 YAGFL -2.44 31.83 1.61 2.67 -37.52 -34.85 -26.72
72 YGGFL -2.24 31.83 1.61 2.46 -37.59 -36.08 -26.09
73 WGGGY -0.76 39.81 1.61 1.47 -38.83 -35.78 -29.77
74 KW -1.28 25.05 0.69 2.15 -38.88 -36.79 -30.76
75 WGGY -0.96 39.81 1.39 1.47 -38.88 -35.47 -29.39
76 FGGF -1.00 30.01 1.39 2.12 -38.95 -35.19 -29.22
77 WF -1.36 39.81 0.69 2.07 -39.97 -37.28 -31.14
78 YSGFLT -3.25 31.83 1.79 2.20 -39.98 -35.47 -28.51
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79 WW -1.32 39.81 0.69 2.02 -41.50 -39.25 -33.67
80 TRSAW -2.09 11.82 1.61 2.53 -41.52 -40.67 -33.07
81 YGGWL -2.20 31.83 1.61 2.41 -42.21 -40.85 -32.63
82 FGFG -1.00 30.01 1.39 2.12 -42.78 -39.83 -34.28
83 RW -1.28 30.05 0.69 2.58 -43.08 -41.39 -33.55
84 FFF -2.10 30.01 1.10 3.18 -44.33 -43.35 -38.04
85 RPPGK -1.04 30.05 1.61 3.81 -44.43 -42.77 -35.55
86 DRVYIHP -5.46 11.58 1.95 5.04 -44.53 -43.75 -37.60
87 KYK -1.94 25.05 1.10 2.74 -45.47 -45.20 -41.39
88 RPPGFSP -1.40 30.05 1.95 4.17 -45.63 -45.23 -41.06
89 WR -1.28 39.81 0.69 2.58 -46.11 -44.77 -38.45
90 DRVYIHPF -6.16 11.58 2.08 6.10 -46.54 -45.96 -41.39
91 ELYENKPRRPY -6.52 16.23 2.40 7.90 -46.61 -46.27 -43.06
92 DRVYVHPFHL -7.54 11.58 2.30 7.16 -47.11 -47.08 -45.15
93 NRVYVHPF -5.64 14.46 2.08 5.16 -47.12 -47.29 -44.15

Descriptors Mobility
# Peptide ES,C MRn ln(N) Kappa(H)

SDS 80 
mM

SDS 60 
mM

SDS 40 
mM

94 YMEHFRW -4.79 31.83 1.95 5.56 -47.21 -46.98 -43.99
95 RYLGYL -4.30 30.05 1.79 4.37 -47.31 -46.99 -45.06
96 ELYENKPRRPYIL -9.37 16.23 2.56 9.79 -47.31 -46.57 -44.76
97 FFFF -2.80 30.01 1.39 4.24 -47.35 -47.43 -44.36
98 CGYGPKKKRKVGG -4.09 13.90 2.56 9.05 -47.48 -46.26 -41.74
99 RPKPQQFFGLM -5.75 30.05 2.40 7.59 -47.55 -47.82 -46.31
100 YRPPGFSPFR -3.42 31.83 2.30 7.26 -47.55 -47.82 -46.31
101 MEHFRWG -3.89 23.12 1.95 5.10 -47.56 -47.47 -43.97
102 DRVYIHPFHL -8.06 11.58 2.30 7.48 -47.66 -46.85 -43.59
103 ELYENKPRRPFIL -9.37 16.23 2.56 10.39 -47.71 -46.77 -44.90
104 AGCKNFFWKTFTSC -5.92 5.65 2.64 8.65 -47.71 -47.66 -45.63
105 RPKPQQF -3.18 30.05 1.95 4.99 -47.83 -47.28 -44.08
106 RPPGFSPFR -2.72 30.05 2.20 6.80 -47.85 -47.71 -46.02
107 RVYIHPI -6.29 30.05 1.95 5.55 -47.86 -47.41 -46.15
108 SYSMEHFRWG -5.15 7.20 2.30 5.34 -47.88 -47.54 -44.80
109 RVYVHPF -4.86 30.05 1.95 5.34 -47.92 -47.27 -45.34
110 FFFFF -3.50 30.01 1.61 5.30 -47.92 -48.27 -46.11
111 RPGFSPFR -2.72 30.05 2.08 6.25 -48.07 -46.91 -44.71
112 DRVYIHPFHLVIHN -12.20 11.58 2.64 9.32 -48.10 -47.43 -45.25
113 WQPPRARI -4.13 39.81 2.08 6.47 -48.11 -47.40 -45.77
114 RGPFPI -2.73 30.05 1.79 4.68 -48.12 -47.14 -42.36
115 IARRHPYFL -6.15 19.59 2.20 7.75 -48.21 -47.30 -44.58
116 WHWLQL -5.08 39.81 1.79 4.40 -48.28 -48.46 -45.62
117 PPGFSPFR -2.10 13.95 2.08 5.23 -48.42 -47.61 -45.54
118 YGGFMRF -3.15 31.83 1.95 4.75 -48.49 -47.09 -44.86
119 EGKRPWIL -5.17 16.23 2.08 6.58 -48.57 -47.47 -45.87
120 WWW -1.98 39.81 1.10 3.03 -48.66 -48.09 -45.97
121 HW -1.32 23.79 0.69 1.45 -40.97 -38.71 -31.77
122 RRPYIL -4.79 30.05 1.79 6.04 -32.39 -29.11 -22.96
123 YPFVEPI -4.72 31.83 1.95 4.62 -32.39 -29.11 -22.96
124 YLEPGPVTA -3.98 31.83 2.20 3.61 -18.05 -16.71 -14.09
125 RKDVY -3.81 30.05 1.61 4.24 -42.31 -40.11 -33.63
126 RFDS -2.38 30.05 1.39 2.96 -31.80 -28.57 -19.86
127 FLEEI -4.79 30.01 1.61 3.79 -27.60 -27.03 -25.53
128 VEPIPY -4.02 14.95 1.79 3.56 -14.58 -14.09 -12.70
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2.3. Sequential forward search for input 
selection using ANFIS

 In this work, ANFIS-based sequential variable 
selection program written in MATLAB is used 
as a feature selection method [21]. The algorithm 
is based on selecting the best descriptor which 
minimizes standard errors of calibration and 
prediction and then repeatedly adds next best 
descriptor to the previous one(s). In the first step 
after sorting the dataset based on the mobility 
values (Table 1), training and test sets in a ratio 
of 4:1 were randomly chosen such that the test 
set adequately represented the training set. Then 
based on three iterations and two Gaussian bell 
membership functions, 5 out of 41 descriptors were 
selected using ANFIS. The selected parameters 
were used as inputs for developing ANN models. 
Analysis of the results obtained by the ANN 
model showed some outliers. These outliers 
were removed from the original dataset and the 
sequential variable selection was repeated using 
the remaining peptides of the dataset. In the final 
stage, a total of four descriptors were selected for 
developing neural networks and further studies. 
The values of these parameters are given in Table 1 
for all peptides studied in this work.

2.4. Descriptors 
The following structural parameters for amino acids 
were considered for calculating the descriptors of 
peptides: The substituent constants (қ), steric effects 
(ES,C) and molecular refractivity (MR) [22,23]. 
The values of these descriptors for twenty amino 
acids are listed in Table 2. Molar refractivity and 
residues mass are scaled by a factor of 0.1, such that 
they will have the same scale according to Hansch 
and Leo [18]. Taft defined the steric constant, ES, as 
log (k/ko), where k and ko are the rate constants for 
the acidic hydrolysis of a substituted ester and of a 
reference ester (methyl group is usually used as the 
reference, but H is sometimes used), respectively 
[24]. Hankcock has stated that there is contribution of 
hyper conjugation (α-hydrogen bonding) to the Taft 
Es; therefore, it must be corrected as defined by [25]:

ES,C = ES + 0.306 (n-3)          (11)

where ES,C is a corrected steric substituent constant 
and Es is the “revised” Taft steric constant[26]; n is 
the number of α-hydrogens. As can be seen in Table 
2, a small value of steric effect was observed for 
“crowded” structures of α-branched side chain (V, 
I, L). This means that they are large resistance to 
the hydrolysis.  

2.5. Artificial neural network 
In the present work, the feed forward back 
propagation of error artificial neural network (BP-
ANN) is written in C++. The input layer consisted of 
the four parameters selected by ANFIS. The output 
layer represents the electrophoretic mobilities of the 
peptides. In this investigation, the bipolar sigmoid 
function, i.e., f (x) = (1-exp (-x)) / (1+exp (-x)), 
is used as the transfer function. The initial weights 
were chosen randomly, and were optimized based 
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Table 2. Physicochemical substituent parameters 
for amino acids

AA Side Chains K ES,C MR

alanine (A) 0.21 0.00 0.57
arginine (R) 1.57 -0.62 3.01
asparagine (N) -0.18 -0.78 1.45
aspartic acid (D) 0.44 -0.78 1.16
cysteine (C) 1.28 0.00 0.00
glutamine (Q) 0.06 -0.62 1.91
glutamic acid (E) 0.42 -0.62 1.62
glycine (G) 0.00 0.20 0.10
histidine (H) 0.44 -0.66 2.38
isoleucine (I) 0.95 -1.61 1.96
leucine (L) 0.94 -1.24 1.96
lysine (K) 1.14 -0.62 2.51
methionine (M) 0.60 -0.83 2.31
phenylalanine (F) 1.06 -0.70 3.00
proline (P) 0.55 0.00 1.40
serine (S) -0.11 -0.28 1.18
threonine (T) -0.15 -0.53 1.18
tryptophan (W) 1.01 -0.66 3.98
tyrosine (Y) 0.46 -0.70 3.18
valine (V) 0.63 -1.09 1.50
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on the delta rule through back propagation of 
errors. The program is written in such a way that 
the range for initialization of the weights depends 
on the number of input and hidden nodes. Before 
training, the inputs were normalized between 
-2 and 2 and the output between 0 and 1. The 
network parameters such as the number of hidden 
layer nodes, learning rate and momentum were 
optimized. Optimizations of these parameters were 
based on obtaining the minimum standard error of 
calibration and prediction. Program automatically 
avoids overfitting by stopping the training when the 
increase in standard error of prediction commences. 
After the analysis of ANN results and removing the 
outliers, the new dataset consisted of 118 peptides 
were sorted based on mobility values. This set was 
divided into training, test and validation sets (in a 
ratio of 4:1:1). However, in order to test the stability 
of the model and making sure that the results are 
not due to the chance, six different sets of training, 
test and validation sets for each concentration of 
SDS were created.

2.6. Methodology 
The present work consists of three steps: (1) 
experimental determination of the mobilities of 
peptides using CE system in 40, 60 and 80 mM SDS 
solutions for two purposes. First, to investigate the 
effects of change of surfactant concentration on the 
mobilities of peptides and secondly, exploration 
of the ability and robustness of the generated 
theoretical models in the prediction of the MEKC 
mobilities at different SDS concentrations. (2) 
Selecting the structural parameters which play the 
major role in the migration behavior of peptides in 
MEKC experiments. This is a challenging process, 
since the mechanism of partitioning of the peptides 
into the micelles and migration of the micelles due to 
the electrophoretic and electroosmotic phenomena 
are complex. In modeling, choosing suitable 
features/descriptors is critical, because without 
success in this step the development of a robust and 
interpretable model is impossible. Therefore, we 
were very anxious to search for a powerful method 
as a feature selection technique. We have chosen 

a neurofuzzy system for this purpose, which is a 
combination of the neural network and fuzzy rules. 
A neural network can model a process by means of 
a linear/nonlinear regression algorithm, for which 
the result is a network with adjusted weights and 
approximates the property of interest. However, 
the problem is that the knowledge is stored in 
an opaque fashion; the learning result is a set of 
parameter values, almost impossible to interpret 
them in words. Conversely, a fuzzy rule-base 
consists of readable if-then statements which are 
very close to natural language, but cannot learn 
the rules. These two are combined in neurofuzzy 
systems in order to achieve readability and learning 
ability at the same time. In this work a sequential 
ANFIS is used as feature selection technique. We 
have chosen ANFIS because of its much faster 
convergence, much more repeatability and much 
less preprocessing compared with ANN. (3) In 
order to develop a model for predicting the MEKC 
mobilities of peptides and also inspecting the 
linear/nonlinear characteristics of the migration 
behavior of peptides in MEKC, simple MLR as a 
linear method and BP-ANN as a nonlinear method 
are used. In both cases we use ANFIS for selecting 
the features. These methods are very common and 
frequently have been used in our laboratory and by 
several other researchers [12-16]. Therefore, for the 
sake of brevity their description is not given here.

2.6.1.Adaptive Neuro-Fuzzy Inference System 
(ANFIS)
By definition fuzzy logic is a type of logic that 
recognizes more than simple true and false values 
[17]. Fuzzy logic can represent propositions by 
degrees of truthfulness and falsehood and has 
proved to be particularly useful in expert systems 
and other artificial intelligence applications. One 
of the hallmarks of fuzzy logic is that it allows 
nonlinear input/output relationships to be expressed 
by a set of qualitative “if-then” rules.  The theory of 
fuzzy logic provides a mathematical morphology to 
emulate certain perceptual and linguistic attributes 
associated with human cognition. Most fuzzy 
systems are hand-crafted by a human expert to 
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capture some desired input/output relationships that 
the expert has in mind. However, often an expert 
cannot express his or her knowledge explicitly; 
and, for many applications, an expert may not 
even exist. Hence, there is considerable interest in 
being able to automatically extract fuzzy rules from 
experimental input/output data. While fuzzy theory 
provides an inference mechanism under cognitive 
uncertainty, computational neural networks offer 
exciting advantages such as learning, adaptation, 
fault-tolerance, parallelism and generalization. 
The computational neural networks are capable of 
coping with computational complexity, nonlinearity 
and uncertainty. In fact, the neural network approach 
fuses well with fuzzy logic and by combining these 
two techniques, benefits of both would be acquired. 
Fuzzy inference is the process of formulating the 
mapping from a given input to an output using 
fuzzy logic (Fig. 1). The mapping then provides a 
basis from which decisions can be made, or patterns 
discerned. One type of fuzzy inference systems is 
based on Takagi-Sugeno model [18]. In the Takagi-
Sugeno model the idea is that each rule in a rule-
base defines a region for a model, which can be 
linear. The left-hand side of each rule defines a fuzzy 
validity region for the linear model on the right-
hand side. The inference mechanism interpolates 
smoothly between each local model to provide 
a global model. As an example consider a single 

input, single output system with the following two 
rules: 1) IF input is large THEN output is line 1.  2) 
IF input is small THEN output is line 2. Where line 
1 is defined as 0.2 * input + 90 and line 2 is 0.6 * 
input + 20. The rules interpolate between the two 
lines in the region where the membership functions 
overlap (Fig. 2). Outside of that region the input is a 
linear function of the error. 

Fig. 2. Interpolation between two lines (top) in the 
overlap of input sets (bottom).

2.6.2.ANFIS architecture
Without loss of generality we assume two inputs, 
u1 and u2, and one output, y. Assume for now a 
first order Sugeno type rule-base composed of the 
following two rules [19]:
If u1 is A1 and u2 is B1 then
  102121111 cucucy ++=  (1)

If u1 is A2 and u2 is B2 then   

202221122 cucucy ++=   (2)
    
Incidentally, this fuzzy controller could interpolate 
between two linear controllers depending on the 
current state. If the firing strengths of the rules are 
α1 and α2 respectively, for two particular values of 
the inputs u1 and u2, then the output is computed as 
a weighted average

2211
21

2211 yyyyy αα
αα
αα

+
+

+ ==
       

    (3)
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Figure 3 shows corresponding ANFIS network. The 
descriptions for the layers shown in the network are 
as follows:  
1. Each neuron i in layer one is adaptive with a 
parametric activation function. Its output is the 
grade of membership to which the given input 
satisfies the membership function, i.e.,

),(),(),( 121 211
uuu ABA µµµ or )( 22

uBµ .
An example of a membership function is the 
generalized bell function:

  
b

a
cx

x 2

1

1)(
−

+

=µ    (4)

where {a, b, c} is the parameter set. As the values 
of the parameters change, the shape of the bell-
shaped function varies. Parameters in that layer are 
called premise parameters.
2. Every node in layer two is a fixed node, whose 
output is the product of all incoming signals. 
In general, any other fuzzy AND operation can 
be used. Each node output represents the firing 
strength αi of the ith rule.
3. Every node in layer three is a fixed node which 
calculates the ratio of the ith rule’s firing strength 
relative to the sum of all rule’s firing strengths,

∑
=

=

2,1i
i

i
i α

α
α   (5)

The result is a normalized firing strength.
 4. Every node in layer four is an adaptive node 
with a node output

)( 02211 iiiiii cucucy ++= αα     2,1=i    (6)
      
where i is the normalized firing strength from layer 
three and {ci1, ci2, ci0} is the parameter set of this 
node. Parameters in this layer are called consequent 
parameters.
5. Every node in layer five is a fixed node which 
sums all incoming signals. It is straightforward to 
generalize the ANFIS architecture in Figure 3 to a 
rule-base with more than two rules.

2.6.3.The ANFIS learning algorithm
When the premise parameters are fixed, the overall 
output is a linear combination of the consequent 
parameters. In symbols, the output y can be written 
as:

2
21

2
1

21

1 yyy
αα

α
αα

α

++

+=                                               (7)

)()( 202221212102121111 cucuccucucy +++++= αα               (8)

2022222211210112211111 )()()()( ccucuccucuy αααααα +++++=  (9)
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Which is linear in the consequent parameters cij 
(i=1, 2; j=0, 1, 2). A hybrid algorithm adjusts the 
consequent parameters cij in a forward pass and the 
premise parameters {ai, bi, ci} in a backward pass. 
In the forward pass the network inputs propagate 
forward up to layer 4, where the consequent 
parameters are identified by the least-squares 
method. In the backward pass, the error signals 
propagate backwards and the premise parameters 
are updated by gradient descent. Because the 
update rules for the premise and consequent 
parameters are decoupled in the hybrid learning 
rule, a computational speedup may be possible 
by using variants of the gradient method or other 
optimization techniques on the premise parameters.

3. Results and discussion 
The main goal of this work was to study the 
mechanism of the migration of peptides in MEKC. 
We hope that the results of this work together with 
our previous works on CZE could pave the way for 
further studies on the 2D MEKC-CZE simulations. 
However, the best way of studying the mechanism 
is gathering a set of the general parameters which 
are responsible for the migration of the peptides 
in MEKC. To achieve this, the mobility of a set 
of different classes of peptides has to be modeled. 
Mobilities of a set of 128 peptides composed of up 
to 14 amino acids in 40, 60 and 80 mM solutions 
of SDS was measured. The general strategy of 
modeling the mobilities was as follows: Feature 
selection using sequential ANFIS algorithm; 
developing MLR and BP-ANN models using the 
selected descriptors as the inputs; and analysis and 
evaluation of the best model.  

3.1. Application of ANFIS as feature selection 
method
After obtaining the values of the mobilities of 128 
peptides using MEKC method and calculating 
41 descriptors for each one, the dataset was 
divided into training (102 peptides) and test sets 
(26 peptides). Then by applying ANFIS, five 
descriptors of Kappa(H), ln(N), ARM, MRC and 
ES,N which minimized the standard errors of 

calibration and prediction were selected. These 
descriptors were used as the inputs to develop a 
network for modeling the mobility of peptides. 
The results of the ANN showed that the network 
is not able to predict accurately the mobility of ten 
peptides and therefore they can be considered as 
statistical outliers. These peptides were DF, DLFL, 
DW, WD, EW, WE, FLEEI, VEPIPY, YPFVEPI 
and YLEPGPVTA. This means that these peptides 
have different characteristics compared with the 
rest of the dataset, and the ANN model is unable 
to learn and predict their behavior. Consequently, 
due to the special characteristics of the above-
mentioned peptides there is the possibility of 
misleading the ANFIS and this method may model 
the noise. Hence, these peptides were removed 
from the dataset and selection of the features was 
repeated. Finally four descriptors (Kappa (H), 
ln (N), MRn and ES,C) which could model the 
mobility were chosen. The behavior of the outliers 
will be discussed later in this section.

3.2. Modeling and prediction by Artificial Neural 
Network
The investigations were started using SDS 80 
mM dataset. Even though we had removed the ten 
outliers in feature selection step, in order to study 
the results of ANN calculations, we added them 
to the dataset again. Then the dataset was divided 
into training, test and validation sets. The network 
was trained and the results were studied. Results 
showed that some peptides cause instability and 
premature training of the network. Therefore, the 
outliers were removed one at a time and entered 
into the validation set in order to study their 
behavior when the network is completely trained 
with the remaining peptides. It is obvious that 
after removing the outliers the remaining peptides 
were divided into new training, test and validation 
sets. These sets are composed of random and 
representative samples, but the validation set 
encompasses the entered samples as well. In the 
final stage eight statistical outliers were obtained 
which were HW, RRPYIL, RFDS, RKDVY 
FLEEI, VEPIPY, YPFVEPI and YLEPGPVTA. 

Anal. Method Environ. Chem. J. 3 (2) (2020) 5-20
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3.3. Analysis of residuals
Figure 4 depicts the residuals of ANN calculated 
values versus the experimental mobilities. It can 
be seen from this figure that the developed ANN 
is not able to predict accurately the mobilities of 
HW and RRPYIL. Also it can be seen that the 
residuals of all of the outliers are located above 
the zero axis. Statistically this means that there 
should be a systematic error in the calculated 
results of the ANN model. However, inspection of 
the residuals reveals that the peptides containing 
middle E and D amino acids together with the six 
outliers lie on a line with a correlation of R2= 
0.992. This implies that the mobility of these 
peptides follows a similar mechanism which is 
different from the mechanism for the remaining 
peptides. Presumably a parameter appropriate 
for accounting the influence of charge is missing. 
Fundamentally a charge descriptor should be 
able to introduce this characteristic to the model. 
However, due to the small number of these type of 
peptides in the dataset (18 peptides), the network 
was not being able to receive enough information 
to learn their behavior. On the other hand, positive 
values of the residuals show that the ANN model 

overestimates the mobilities of these peptides. 
The repulsion between the negatively charged D 
and E amino acids and the anionic SDS surfactant 
could be responsible for this overestimation. 
Because of this repulsion, these peptides spend 
a shorter time in the micellar phase and move 
slower. Consequently, one expects that in more 
dilute solutions of SDS, this effect be more 
pronounced.

3.4. Effect of SDS concentration on peptide 
mobilities

In order to investigate the effect of concentration 
on the migration of peptides, in addition to the 
original model which was developed based on 
the 80 mM SDS solution, two other models were 
developed using the same descriptors and same 
settings of the network for 40 and 60 mM SDS 
solutions. Figure 5 presents the predicted results 
(validation set) versus the experimental values 
for 80, 60 and 40 mM SDS solutions. Inspection 
of the figures reveals that by decreasing the 
SDS concentration the spread of points around 
the correlation line has increased. Therefore, a 
question arises regarding the effect of the SDS 
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concentration on the mobility behavior of the 
peptides. To explain the grounds, we refer to Figures 
6 which are obtained using purely experimental 
values. These figures show the trend of mobility 
changes due to changes in SDS concentration. 
The vertical axis shows the change in mobility 
for two solutions of SDS and the horizontal axis 
is the mobility of the more concentrated one. By 
inspection of these figures one may conclude that: 
(1) Concentration increments have a profound 
effect on the curvatures of the mobility trends. 
Figure 6C with the highest concentration gradient 
shows a high curvature. On the other hand, 
although the concentration gradients are equal in 
figures 6A and 6B (20mM), Figure 6A shows a 

very small curvature compared with Figure 6B. 
This shows that 40 and 60 mM solutions are below 
the optimum level of SDS concentration. This may 
be due to the fact that when the solution is more 
dilute the effect of micelles is less profound, and 
CZE mechanism prevails over MEKC. Since the 
ANN model is trained based on the MEKC data, 
the calculated values for the more dilute solutions 
show a broader spread. (2) The compounds which 
include E and D amino acids behave different in 
comparison with the other peptides. This is more 
pronounced for the dipeptides. Points marked 
with hollow squares in Figures 6 belong to FLEEI, 
DW, WD, WE, EW, DF and DLFL. The figures 
show that these peptides do not obey the general 
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trend of mobility changes which exists for the 
other peptides. FLEEI is the only peptide in the 
dataset which contains two E amino acids, so it 
would suffer more of the repulsion forces which 
exists between E amino acids and the anionic 
surfactant. The footprint of this interaction exits 
in the outliers of the ANN (RFDS, RKDVY, 
FLEEI, VEPIPY, YPFVEPI and YLEPGPVTA), 
and ANFIS (DF, DLFL, DW, WD, EW, WE, 
FLEEI, VEPIPY, YPFVEPI and YLEPGPVTA) 
as well.

3.5. Comparison of MLR and ANN results
To investigate the linear/nonlinear characteristics 
of the relation between mobility and the 
descriptors, a similar MLR model was developed. 
For a meaningful comparison, both the ANN and 
MLR methods has to be trained using the same 
training set and verified by the same validation set. 
Despite the fact that we have used all of the peptides 
(outliers of the ANN model were excluded) in the 
regression step, the MLR calculated results for the 
training set show a poor correlation of 0.71. This 
demonstrates the inadequacy of MLR method 
for the modeling of the peptide mobilities, and 
irrational trend of residuals (Fig. 7). This could be 
due to nonlinear characteristics of the mobilities. 
Such a trend is absent in ANN residuals (Fig. 
4). In order to assess the role of each variable in 
nonlinear characteristics of the peptide mobilities, 
the MLR residuals for the variables are depicted in 
Figure 8. These figures suggest that, kappa could 
be the parameter responsible for the nonlinearity, 
because the trend in its residuals is very similar to 
the trend of the MLR residual plot. 

3.6. Robustness of the ANN models
After the training of the ANN for the prediction 
of peptide mobilities in different concentrations of 
SDS, the outliers were expelled and the remaining 
peptides were divided into six different batches 
of training, test and validation sets. These batches 
were chosen in a way that in each one every peptide 
appeared in the test and validation sets once. Then 
all six batches of training, test and validation sets 
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were trained and applied for predicting the peptide 
mobilities in solutions with different concentrations 
of SDS. It can be seen from Figures 5 and Tables 
3 and 4 that the residuals are promising for all of 
the six batches. Table 3 is devoted to correlation 
values for training, test and validation sets of 
each batch. The values for the correlations were 
in the range of 0.849 to 0.969 for all batches with 
different concentrations of SDS, which show the 
robustness of the model. Table 4 shows the average 
deviation (AD), average absolute deviation (AAD) 
and standard deviation (SD) of the ANN predicted 
values (validation sets) which have been calculated 
through equations 12-14.
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in these equations yi are calculated mobilities, ŷi 
represents experimental mobilities and n is the 
number of samples of the set. In these calculations 
we have not considered the outlier peptides of the 
validation sets which were outliers. The small values 
of the deviations reveal the lack of systematic errors in 
the model. It is noteworthy that the SD shows a range 
of 3.410 to 4.040 which is close to the experimental 
errors. These deviations also confirm the predictive 
ability and robustness of the model. 

4. Conclusion
A long-range goal of our laboratory is the development 
of experimental and theoretical methods for peptide 
separations and mapping in two-dimensional MEKC-
CZE scheme. We have considered the specifications 
of simplicity, accuracy and robustness of the models 
in predicting the CZE and MEKC mobilities of the 
peptides. In our previous works [9-10], we showed 
the ability of the artificial neural networks in modeling 
of the CZE mobilities. This paper focuses on MEKC 
with more complicated mechanism compared to 
the CZE. Adaptive neuro-fuzzy inference system 
(ANFIS) was successfully used to select the most 
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appropriate variables as ANN inputs. It is shown that 
except for the peptides including negatively charged 
amino acids the model holds promise for application 
in predicting the peptide mobilities in MEKC 
systems. However, researches are underway in our 
laboratory to combine the CZE and MEKC models 
to map the peptides in 2D CZE/MEKC scheme.
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