Photocatalytic degradation of Perchloroethylene by a lab-scale continuous-flow annular photoreactor packed with glass beads carbon-doped TiO2 nanoparticles

Volume 4, Issue 04, Pages 5-19, Dec 2021 *** Field: Nanotechnology in Environment Chemistry

  • Hojjat kazemi, Corresponding Author, Analytical Chemistry Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
  • Mahboubeh Rabbani Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
  • Haniye Kashafroodi Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
  • Hossin Kazemi Research Institute of Petroleum Industry (RIPI), Tehran, Iran
Keywords: TiO2 nanoparticles, Photocatalyst, Chlorinated volatile organic compounds, Pollutant degradation, Sol-gel, Gas chromatography-mass spectrometer

Abstract

In this study, the amount of photocatalytic degradation of perchloroethylene in the gas phase was investigated by a fixed bed continuous-flow tubular photoreactor. The photoreactor consists of a cylindrical glass tube, was filled with glass beads coated with nanoparticles of TiO2, TiO2 doped carbon (TiO2-C). These nanoparticles were synthesized by the sol-gel method and deposited on glass beads using the sol-gel dip technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), and diffuse reflectance spectroscopy (DRS) were used for the characterization of synthesized materials. The effect of different parameters such as relative humidity, residence time, PCE concentration on the photocatalytic degradation process was investigated by ultraviolet irradiation to achieve the highest possible degradation efficiency. The PCE degradation and byproduct species were monitored and identified with a gas chromatography-mass spectrometer device (GC-MS). Under the optimum experimental conditions, the photocatalytic activities of TiO2, TiO2-C were investigated and compared together. The results showed that photocatalytic activity of TiO2 for degradation of PCE was extremely increased when doped with carbon. For TiO2-C catalyst, under UV irradiation (3000 ppm initial PCE concentration, 30% humidity and 1 min residence time) approximately 96% of the initial PCE was degraded.

References

K.-S. Lin, N.V. Mdlovu, C.-Y. Chen, C.-L. Chiang, K. Dehvari, Degradation of TCE, PCE, and 1, 2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles, J. Clean. Prod., 175 (2018) 456-466. https://doi.org/10.1016/j.jclepro.2017.12.074

F.V. Lopes, R.A. Monteiro, A.M. Silva, G.V. Silva, J.L. Faria, A.M. Mendes, V.J. Vilar, R.A. Boaventura, Insights into UV-TiO2 photocatalytic degradation of PCE for air decontamination systems, Chem. Eng. j., 204 (2012) 244-257. https://doi.org/10.1016/j.cej.2012.07.079

A. Gupta, A. Pal, C. Sahoo, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and methyl red dye in aqueous suspensions using Ag+ doped TiO2, Dyes and Pigments, 69 (2006) 224-232. https://doi.org/10.1016/j.dyepig.2005.04.001

A.G. Akerdi, S.H. Bahrami, Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A Review, J. Environ. Chem. Eng., 7 (2019) 103283. https://doi.org/10.1016/j.jece.2019.103283

A. Fernandes, M. Gągol, P. Makoś, J.A. Khan, G. Boczkaj, Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds, Sep. Purif. Technol., 224 (2019) 1-14. https://doi.org/10.1016/j.seppur.2019.05.012

W.-K. Jo, J.-H. Park, H.-D. Chun, Photocatalytic destruction of VOCs for in-vehicle air cleaning, J. Photochem. Photobiol. A: Chem., 148 (2002) 109-119. https://doi.org/10.1016/S1010-6030(02)00080-1

A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chem. Eng. J., 183 (2012) 1-9. https://doi.org/10.1016/j.cej.2011.12.010

H. Shemer, Y.K. Kunukcu, K.G. Linden, Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes, Chemosphere, 63 (2006) 269-276. https://doi.org/10.1016/j.chemosphere.2005.07.029

K. Li, M.I. Stefan, J.C. Crittenden, Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling, Environ, Sci. Technol., 41 (2007) 1696-1703. https://doi.org/10.1021/es0607638

K. Sivagami, R.R. Krishna, T. Swaminathan, Photo catalytic degradation of pesticides in immobilized bead photo reactor under solar irradiation, Solar Energ., 103 (2014) 488-493. https://doi.org/10.1016/j.solener.2014.02.001

N. Petit, A. Bouzaza, D. Wolbert, P. Petit, J. Dussaud, Photocatalytic degradation of gaseous perchloroethylene in continuous flow reactors: rate enhancement by chlorine radicals, Catalysis Today, 124 (2007) 266-272. https://doi.org/10.1016/j.cattod.2007.03.050

L.B.B. Ndong, M.P. Ibondou, X. Gu, M. Xu, S. Lu, Z. Qiu, Q. Sui, S.M. Mbadinga, Efficiently synthetic TiO 2 nano-sheets for PCE, TCE, and TCA degradations in aqueous phase under VUV irradiation, Water, Air, Soil Pollut., 225 (2014) 1951. https://doi.org/10.1007/s11270-014-1951-8

S. Yamazaki, T. Tanimura, A. Yoshida, K. Hori, Reaction mechanism of photocatalytic degradation of chlorinated ethylenes on porous TiO2 pellets: Cl radical-initiated mechanism, J. Phys. Chem. A, 108 (2004) 5183-5188. https://doi.org/10.1021/jp0311310

R.A. Monteiro, A.M. Silva, J.R. Ângelo, G.V. Silva, A.M. Mendes, R.A. Boaventura, V.J. Vilar, Photocatalytic oxidation of gaseous perchloroethylene over TiO2 based paint, J. Photochem. Photobiol. A Chem., 311 (2015) 41-52. https://doi.org/10.1016/j.jphotochem.2015.06.007

H. Yu, S. Lee, J. Yu, C. Ao, Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers, J. Mol. Catal. A Chem., 246 (2006) 206-211. https://doi.org/10.1016/j.molcata.2005.11.007

A. Basso, A.P. Battisti, R.d.F.P.M. Moreira, H.J. José, Photocatalytic effect of addition of TiO2 to acrylic-based paint for passive toluene degradation, Environ. Technol., (2018) 1-12. https://doi.org/10.1080/09593330.2018.1542034

H. Rasoulnezhad, G. Hosseinzadeh, R. Hosseinzadeh, N. Ghasemian, Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity, J. Adv. Ceram., 7 (2018) 185-196. https://creativecommons.org/licenses/by/4.0/.

S. Yamazaki, H. Tsukamoto, K. Araki, T. Tanimura, I. Tejedor-Tejedor, M.A. Anderson, Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets, Appl. Catal. B Environ., 33 (2001) 109-117. https://doi.org/10.1016/S0926-3373(01)00167-9

A.C. Martins, A.L. Cazetta, O. Pezoti, J.R. Souza, T. Zhang, E.J. Pilau, T. Asefa, V.C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceram. Int., 43 (2017) 4411-4418. https://doi.org/10.1016/j.ceramint.2016.12.088

Y. Liang, B. Zhou, N. Li, L. Liu, Z. Xu, F. Li, J. Li, W. Mai, X. Qian, N. Wu, Enhanced dye photocatalysis and recycling abilities of semi-wrapped TiO2@ carbon nanofibers formed via foaming agent driving, Ceram. Int., 44 (2018) 1711-1718. https://doi.org/10.1016/j.ceramint.2017.10.101

F.H. Abdulrazzak, Enhance photocatalytic activity of TiO2 by carbon nanotubes, Inter. J. Chem. Tech. Res., 9 (2016) 431-443. https://sphinxsai.com/chemtech.php

H. Liang, Z. Jia, H. Zhang, X. Wang, J. Wang, Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B, Appl. Surf. Sci., 422 (2017) 1-10. http://dx.doi.org/10.1016/j.apsusc.2017.05.211

D. Zhang, J. Chen, P. Deng, X. Wang, Y. Li, T. Wen, Y. Li, Q. Xiang, Y. Liao, Hydrogen evolution promotion of Au‐nanoparticles‐decorated TiO2 nanotube arrays prepared by dip‐loading approach, J. Am. Ceram. Soc., 109 (2019) 5873-5880. https://doi.org/10.1111/jace.16441

A. Martinez-Oviedo, S.K. Ray, H.P. Nguyen, S.W. Lee, Efficient photo-oxidation of NOx by Sn doped blue TiO2 nanoparticles, J. Photochem. Photobiol. A Chem., 370 (2019) 18-25. https://doi.org/10.1016/j.jphotochem.2018.10.032

B. Niu, Z. Xu, From E‐waste to Nb‐Pb Co‐doped and Pd‐loaded TiO2/BaTiO3 heterostructure: highly efficient photocatalytic performance, Chem. Sus. Chem., 12 (2019) 2819-2828. https://doi.org/10.1002/cssc.201900071.

H. She, H. Zhou, L. Li, L. Wang, J. Huang, Q. Wang, Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol, ACS Sus. Chem. Eng., 6 (2018) 11939-11948.

https://doi.org/10.1021/acssuschemeng.8b02217

L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity, J. Electrochem. Soc., 164 (2017) H651-H656. https://doi.org/10.1149/2.1531709jes

F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach, J. Phys. Chem. C, 115 (2011) 13285-13292. https://doi.org/10.1021/jp111916q

G.B. Soares, B. Bravin, C.M. Vaz, C. Ribeiro, Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties, App. Catal. B Environ., 106 (2011) 287-294.https://doi.org/10.1016/j.apcatb.2011.05.018

H. Li, D. Wang, H. Fan, P. Wang, T. Jiang, T. Xie, Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties, J. Colloid Interface Sci., 354 (2011) 175-180. https://doi.org/10.1016/j.jcis.2010.10.048

T.-D. Pham, B.-K. Lee, Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light, J. Hazard. Mater., 300 (2015) 493-503. https://doi.org/10.1016/j.jhazmat.2015.07.048.

J. Zhao, X. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 38 (2003) 645-654. https://doi.org/10.1016/S0360-1323(02)00212-3

J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: A literature review, Atmos. Environ., 43 (2009) 2229-2246. https://doi.org/10.1016/j.atmosenv.2009.01.034

M. Behpour, V. Atouf, Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation, Appl. Surf. Sci., 258 (2012) 6595-6601. https://doi.org/10.1016/j.apsusc.2012.03.085

T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control, J. Colloid Interface Sci., 259 (2003) 43-52. https://doi.org/10.1016/S0021-9797(03)00036-5

G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response, Chemistry of Materials, 19 (2007) 4530-4537. https://doi.org/10.1021/cm071244m

S.Y. Treschev, P.-W. Chou, Y.-H. Tseng, J.-B. Wang, E.V. Perevedentseva, C.-L. Cheng, Photoactivities of the visible-light-activated mixed-phase carbon-containing titanium dioxide: The effect of carbon incorporation, Applied Catalysis B: Environmental, 79 (2008) 8-16. https://doi.org/10.1016/j.apcatb.2007.09.046

J. Abisharani, S. Devikala, R.D. Kumar, M. Arthanareeswari, P. Kamaraj, Green synthesis of TiO2 Nanoparticles using Cucurbita pepo seeds extract, Mater. Today: Proc., 14 (2019) 302-307. https://doi.org/10.1016/j.matpr.2019.04.151

A. Wanag, E. Kusiak-Nejman, J. Kapica-Kozar, A.W. Morawski, Photocatalytic performance of thermally prepared TiO2/C photocatalysts under artificial solar light, Micro & Nano Letters, 11 (2016) 202-206.https://doi.org/10.1049/mnl.2015.0507

P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, TiO2@ carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties, Nanoscale, 3 (2011) 2943-2949. https://doi.org/10.1039/C1NR10269A

SIP references

SIP41s- M. Hussain, N. Russo, G. Saracco, Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles, Chem. Eng. J., 166 (2011) 138-149.

SIP42s- W.-K. Jo, K.-H. Park, Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application, Chemosphere, 57 (2004) 555-565.

SIP43s- T.N. Obee, R.T. Brown, TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene, Environ. Sci. Technol., 29 (1995) 1223-1231.

SIP44s- T.N. Obee, S.O. Hay, Effects of moisture and temperature on the photooxidation of ethylene on titania, Environ. Sci. Technol., 31 (1997) 2034-2038.

SIP45s- L. Cao, A. Huang, F.-J. Spiess, S.L. Suib, Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts, J. Catal., 188 (1999) 48-57.

SIp46s- F. Benoit-Marquié, U. Wilkenhöner, V. Simon, A.M. Braun, E. Oliveros, M.-T. Maurette, VOC photodegradation at the gas–solid interface of a TiO2 photocatalyst: Part I: 1-butanol and 1-butylamine, J. Photochem. Photobiol. A Chem., 132 (2000) 225-232.

SIP47s- L. Cermenati, P. Pichat, C. Guillard, A. Albini, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH• radicals and superoxide dismutase, J. Phys. Chem. B, 101 (1997) 2650-2658.

SIP48s- R. Tejasvi, M. Sharma, K. Upadhyay, Passive photo-catalytic destruction of air-borne VOCs in high traffic areas using TiO2-coated flexible PVC sheet, Chem. Eng. J., 262 (2015) 875-881.

SIP49s- M. Takeuchi, M. Hidaka, M. Anpo, Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst, J. Hazard. Mater., 237 (2012) 133-139.

SIP50s- W. Feng, Y. Feng, Z. Wu, A. Fujii, M. Ozaki, K. Yoshino, Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes, J. Phys.: Condensed Matter., 17 (2005) 4361-4368.

SIP51s- C.G. Silva, M.J. Sampaio, R.R. Marques, L.A. Ferreira, P.B. Tavares, A.M. Silva, J.L. Faria, Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts, Appl. Catal. B Environ., 178 (2015) 82-90.

SIP52s- X. Fu, H. Yang, G. Lu, Y. Tu, J. Wu, Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr (VI) in aqueous solution, Mater. Sci. Semiconduc. Proc., 39 (2015) 362-370.

SIP53s- M. Minella, M. Baudino, C. Minero, A revised photocatalytic transformation mechanism for chlorinated VOCs: Experimental evidence from C2Cl4 in the gas phase, Catal. Today, 313 (2018) 114-121.

SIP54s- M.R. Nimlos, W.A. Jacoby, D.M. Blake, T.A. Milne, Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms, Environ. Sci. Technol., 27 (1993) 732-740.

SIP55s- H.-H. Ou, S.-L. Lo, Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene, J. Mol. Catal. A Chem., 275 (2007) 200-205.

SIP56s- G.E. Imoberdorf, A.E. Cassano, O.M. Alfano, H.A. Irazoqui, Modeling of a multiannular photocatalytic reactor for perchloroethylene degradation in air, AIChE j., 52 (2006) 1814-1823.

SIP57s- V. Puddu, H. Choi, D.D. Dionysiou, G.L. Puma, TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation, Appl. Catal. B Environ., 94 (2010) 211-218.

SIP58s- G.E. Imoberdorf, H.A. Irazoqui, A.E. Cassano, O.M. Alfano, Photocatalytic degradation of tetrachloroethylene in gas phase on TiO2 films: A kinetic study, Ind. Eng. Chem. Res., 44 (2005) 6075-6085.

SIP59s- S. Yamazaki-Nishida, K. Nagano, L. Phillips, S. Cervera-March, M. Anderson, Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets, J. Photochem. Photobiol. A Chem., 70 (1993) 95-99.

SIP60s- T. Tanimura, A. Yoshida, S. Yamazaki, Reduced formation of undesirable by-products from photocatalytic degradation of trichloroethylene, Appl. Catal. B Environ., 61 (2005) 346-351.

Published
2021-12-28
How to Cite
kazemi, H., Rabbani, M., Kashafroodi, H., & Kazemi, H. (2021). Photocatalytic degradation of Perchloroethylene by a lab-scale continuous-flow annular photoreactor packed with glass beads carbon-doped TiO2 nanoparticles. Analytical Methods in Environmental Chemistry Journal, 4(04), 5-19. https://doi.org/10.24200/amecj.v4.i04.159
Section
Original Article