Preparation and Characterization of Chitosan Nanocomposite Based on Nanoscale Silver and Nanomontmorillonite

Vol 2, Issue 02, Pages 5-12,*** Field:Food Chemistry

  • Fatemeh- Sadat Ebnerasool
  • Negar Motakef Kazemi Islamic Azad University
Keywords: Nanocomposite, Chitosan, Nanoscale silver, Nanomontmorillonite, Packaging.


The chitosan nanocomposites were rapidly prepared by simple solution method. This biopolymer matrix was modified by prepared nanoscale silver (Ag) using in situ synthesis from precursor and nanomontmorillonite (NMMT). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and energy dispersive x-ray spectroscopy (EDX). The water vapor properties (WVP) of nanocomposites were investigated using gravimetric standard. The antibacterial activity of nanocomposite was measured by the well diffusion method on Muller–Hinton Agar against Escherichia coli (E. coli) by zone inhibition. Based on the obtained results, the nanocomposite can have a good candidate for different applications and food packaging industry.


H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Tech., 60 (2006) 30-36.

G. Christina, V. Dirk, I. Arnout, V. Blaaderen, A general method to coat colloidal particles with silica, Langmuir, 19 (17) (2003) 6693-6700.

W. Han, Y.J. Yu, N.T. Li, L.B. Wang, Application and safety assessment for nano-composite materials in food packaging, Chin Sci Bull, 56(12) (2011) 1216-1225.

H. Bouwmeester, S. Dekkers, M.Y. Noordam, W.I. Hagens, A.S. Bulder, C.D. Heer, S.E.C.G.T. Voorde, S.W.P. Wijnhoven, H.J.P. Marvin, A.J.A.M. Sips, Review of health safety aspects of nanotechnologies in food production, Regul. Toxicol. Pharmacol, 53 (2009) 52-62.

C.F. Chau, S.H. Wu, G.C. Yen, The development of regulations for food nanotechnology, Trends Food Sci Technol, 18 (2007) 269-280.

S.H. Peighambardoust, F. Beigmohammadi, S.J. Peighambardoust, Application of organoclay nanoparticle in low-density polyethylene films for packaging of UF cheese, Package Technol. Sci. 29 (2016) 355-363.

M. Auta, B.H. Hameed, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chem. Eng. Sci., 237(2014) 352-361.

G. Choudalakis, A.D. Gotsis, Permeability of polymer/clay nanocomposites: A review, Eur. Polym. J, 45 (2009) 967-984.

T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, J. Colloid Interface Sci, 363 (2011) 1-24.

R.I. Quintero, F. Rodriguez, J. Bruna, A. Guarda, M.J. Galotto, Cellulose acetate butyrate nanocomposites with antimicrobial properties for food packaging, Package Technol. Sci., 26(5) (2013) 249-265.

R. Tankhiwale, S.K. Bajpai, Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging, Colloids Surface B ,90 (2012) 16-20.

S.S. Ray, K. Yamada, M. Okamoto, K. Ueda, Polylactide-layered silicate nanocomposite: a novel biodegradable material, Nano Lett. 2 (2002) 1093-1096.

M. Avella, J.J. DeVlieger, M. Emanuela-Errico, S. Fischer, P. Vacca, M. Grazia-Volpe, Biodegradable starch/clay nanocomposite films for food packaging applications, Food. Chem, 93(2005) 467-474.

V.P. Cyras, L.B. Manfredi, M.T. Ton-That, A. Vazquez, Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films, Carbohydr Polym, 73 (2008) 55-63.

H.M. Azeredo, L.H. Mattoso, D. Wood, T.G. Williams, R.J. Avena-Bustillos, T.H. McHugh, Nanocomposite edible films from mango puree reinforced with cellulose nanofibers, J. Food Sci, 74(5) (2009) 31-35.

Y. Lu, L. Weng, L. Zhang, Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers, Biomacromolecules, 5(2004) 1046-1051.

S.A. Siddiqi, U. Aahar, F. Manzoor, A. Jamal, M. Tariq, M. Saleem, A.A. Chaudhry, I.U. Regman, Fabrication of biocompatible nano-carbonated hydroxyapatite/polymer spongy scaffolds, Dig. J. Nanomater. Bios., 13(2) (2018) 439-450.

Z. Liu, M. Lv, F. Li, M. Zeng, Development, characterization, and antimicrobial activity of gelatin/chitosan/ZnO nanoparticle composite films, J. Aquat. Food Prod. T, 25(2016) 1056-1063.

Y. Xu, X. Ren, M.A. Hanna, Chitosan/clay nanocomposite film preparation and characterization, J. Appl. Polym. Sci, 99 (2006) 1684-1691.

M.R.D. Moura, M.V. Lorevice, L.H.C. Mattoso, V. Zucolotto, Highly stable, edible cellulose films incorporating chitosan nanoparticles, J. Food Sci, 76(2) (2011) 25-29.

K. Lewandowska, A. Sionkowska, B. Kaczmarek, G. Furtos, Characterization of chitosan composites with various clays, Int. J. Biol. Macromol, 65(2014) 534-541.

P. Adibzadeh, N. Motakef-Kazemi, Preparation and characterization of curcumin-silver nanoparticle and evaluation of the effect of poly ethylene glycol and temperature, J Nanoanal., 5(3) (2018) 156-162.

H. Jafari, M.K. Pirouzifard, M. Alizadeh-Khaledabad, H. Almasi, Effect of chitin nanofiber on the morphological and physicalproperties of chitosan/silver nanoparticle bionanocomposite films, Int. J. Biol. Macromol, 92(2016) 461-466.

P. Dallas, V.K. Sharma, R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives, Adv. Colloid Interface Sci, 166(2011) 119-135.

E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties, Chem. Mater, 13(10) (2001) 3516-3523.

M. Abdollahi, M. Rezaei, G. Farzi, A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan, J. Food. Eng, 111(2012) 343-350.

E.M.S. Azzam, S.M. Solyman, A.A. Abd-Elaal, Fabrication of chitosan/Ag-nanoparticles/clay nanocomposites forcatalytic control on oxidative polymerization of aniline, Colloids Surf. A: Physicochem, Eng. Aspects, 510(2016) 221-230.

Y.S. Han, S.H. Lee, K.H. Choi, I. Park, Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity, J. Phys. Chem. Solids, 71(2010) 464-467.

S. Tripathi, G.K. Mehrotra, P.K. Dutta, Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity, Bull. Mater. Sci, 34(2011) 129-135.

C. Paluszkiewicz, E. Stodolak, M. Hasik, M. Blazewicz, FT-IR study of montmorillonite–chitosan nanocomposite materials, Spectrochim Acta A. 79 (2011) 784-788.

J. An, Z. Ji, D. Wang, Q. Luo, X. Li, Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities, Mater. Sci. Eng. C, 36(2014) 33-41.

C. Aguzzi, G. Sandri, C. Bonferoni, P. Cerezo, S. Rossi, F. Ferrari, C. Caramella, C. Viseras, Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing, Colloids Surface B, 113 (2014) 152-157.

K. Shameli, M. Bin Ahmad, M. Zargar, W. Md Zin Wan Yunus, N. Azowa Ibrahim, P. Shabanzadeh, M. Ghaffari Moghaddam, Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity, Int. J. Nanomedicine, 6 (2011) 271-284.

N. Feizi Langaroudi, N. Motakef Kazemi, Preparation and characterization of O/W nanoemulsion with Mint essential oil and Parsley aqueous extract and the presence effect of chitosan, Nanomed. Res. J., 4 (2019) 48-55.

How to Cite
Sadat Ebnerasool, F.-, & Motakef Kazemi, N. (2019). Preparation and Characterization of Chitosan Nanocomposite Based on Nanoscale Silver and Nanomontmorillonite. Analytical Methods in Environmental Chemistry Journal, 2(2), 5-12.
Original Article