Microplastics, an Emerging Concern: A Review of Analytical Techniques for Detecting and Quantifying Microplatics

Vol 2, Issue 02, Pages 13-30,*** Field: Health and environment

  • Verla Andrew wirnkor Faculty of Science, Imo State University, Owerri, Imo State, Nigeria
  • Enyoh Christian Ebere Group Research in Analytical Chemistry, Environment and Climate change (GRACE&CC), Department of Chemistry, Faculty of Science, Imo State University, Owerri, Imo State
  • Verla Evelyn Ngozi School of Environmental Technology Federal University of Technology, Owerri, Imo State, Nigeria
Keywords: Anthropogenic, Fragmentation, Health implications, Hyphenated methods, Matrices, Seafood.


Microplastics are ubiquitous tiny plastic particles (< 5 mm) nonbiodegradable and have large surface area in the environment or the body of living things from anthropogenic activities or fragmentation of plastic debris. Though found in sea food and human body, their health implications are still speculative. A major reason for dearth of information on this topical issue is the lack of standard methods for analyzing microplastics in more complex environmental matrices. In the present review some methodologies for analyzing microplastics reported in the period 2000 to 2018 have been documented with the aim of assessing which methods is most suitable and in what matrix. The following methods have been studied: CHN analyzers, pyrolysis-gas chromatography/mass spectroscopy (PyrGC/MS), optical microscopy, fourier transform infrared microspectroscopy (Micro-FTIR), raman microspectroscopy (RMS) and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Studies have been conducted with often a combination of two methods; one separating and the other quantifying which can be problematic moreso in living tissue where there is no harm reported as at the time of this study. However, microplastics have become a cause for concern and advance studies are required to unravel the potential risk of their presence in our food and environment.


R.U. Halden, Plastics and public health, Annu. Rev. Pub. Health, 31 (2010) 179-194.

Statista, Production of plastics worldwide from 1950 to 2017 in million metric tons, 2018. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

R.C. Thompson, Plastic debris in the marine environment:consequences and solution, marine nature conservation in Europe, federal agency for nature conservation, Stralsund, 2006.

J.G. Derraik, The pollution of the marine environment by plastic debris: a review, Marter. Poll. Bull., 44 (2002) 842–852.

C.J. Moore, G. L. Lattin, A.F. Zellers, Density of plastic particles found in zooplankton trawls from coastal waters of California to the north pacific central gyre, The plastic debris river to sea conference, Redondo Beach, California, 2005.

D. Barnes, F. Galgani, R. Thompson, M. Barlaz, Accumulation and fragmentation of plastic debris in global environments. Philo. Trans. Royal Soc. B, 364 (2009) 985-998.

M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Microplasticsas contaminants in the marine environment: a review. Mar. Poll. Bull, 62(2011) 2588–2597.

Greenfacts, Marine Litter: What are micro-plastics and how do they enter the marine environment? (2018). https://www.greenfacts.org/en/marine-litter/l-2/3-micro-plastics.htm [Accessed 09 May 2018].

E.R. Graham, J.T. Thompson, Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Bio. Eco. 368, (2009), 22–29.

K. Betts, Why small plastic particles may pose a big problem in the oceans, Env. Sci. Tech, 42(2008) 8995-8999.

M.A. Browne, A. Dissanayake, T.S. Galloway, D.M. Lowe, R.C. Thompson, Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L), Env. Sci. Tech, 42 (2008) 5026–5031

M.A. Browne, P. Crump, S.J. Niven, E. Teuten, A. Tonkin, T. Galloway, Accumulation of microplastic on shorelines worldwide: Sources and sinks, Env. Sci. Tech, 45(2011) 9175–9179.

M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck, C. R. Janssen, Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Poll. Bull, 62 (2011) 2199–2204.

J. Hammer, M.H. Kraak, J.R. Parsons, Plastics in the marine environment: the dark side of a modern gift". Reviews of environmental contamination and toxicology, 220 (2012) 1–44.

A. Vianell, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Sci, 130 (2013) 54–61.

L. Van Cauwenberghe, A. Vanreusel, J. Mees, C.R. Janssen, Microplastic pollution in deep-sea sediments. Env. Poll, 182 (2013) 495–499.

K.L. Ng, J.P. Obbard, Prevalence of microplastics in Singapore’s coastal marineenvironment, Mar. Poll. Bull, 52 (2006) 761–767.

T. Bowmer, P. Kershaw, Bioaccumulating and Toxic Substances in the Oceans, In: Proceedings of the GESAMP International Workshop on Microplastic Particles as a Vector in Transporting Persistent, (2010).

S. Endo, R. Takizawa, K. Okuda, H. Takada, K. Chiba, H. Kanehiro, H. Ogi, R. Yamashita, T. Date, Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences, Mar. Poll. Bull., 50 (2005) 1103-1114.

Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, T. Kaminuma Plastic resin pellets as a transport medium for toxic chemicals in the marine environment, Env. Sci. Tech., 35 (2001) 318-324.

L. M. Rios, C. Moore, P.R. Jones, Persistent organic pollutants carried bysynthetic polymers in the ocean environment, Mar. Poll. Bull, 54 (2007) 1230-1237.

A.A. Koelmans, E. Besseling, E.M. Foekema, Leaching of plastic additives tomarine organisms, Env. Poll, 187 (2014) 49-54.

C. M. Rochman, E. Hoh, T. Kurobe, S.J. Teh, Ingested plastic transfers hazardouschemicals to fish and induces hepatic stress, Scientific Reports, 3 (2013) 3263.

L.A. Holmes, A. Turner, R.C. Thompson, Adsorption of trace metals to plastic resin pellets in the marine environment, Env. Poll., 160 (2012) 42-48.

C.M. Rochman, B.T. Hentschel, S.J. Teh, Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments, PLoS One, 9 (2014) 85433.

K. Ashton, L. Holmes, A. Turner, Association of metals with plastic production pellets in the marine environment, Mar. Poll. Bull., 60 (2010) 2050-2055.

L.A. Holmes, A. Turner, R.C. Thompson, Interactions between trace metals and plastic production pellets under estuarine conditions, Marine Chemistry, 23 (2014) 1-8.

F. Murray, P.R. Cowie, Plastic contamination in the decapod crustacean Nephrops norvegicus, Mar. Pollu. Bull, 62 (2011) 1207–1217.

A. Ugolini, G. Ungherese, M. Ciofini, A. Lapucci, M. Camaiti, Microplastic debris in sandhoppers. Estuarine, Coastal and Shelf Sci., 129 (2013) 19–22.

E.M. Foekema, C. De Gruijter, M.T. Mergia, J.A. van Franeker, A.J. Murk, A.A. Koelmans, Plastic in North Sea fish, Env. Sci. Tech., 47 (2013) 8818–8824.

S.L. Wright, R.C. Thompson, T.S. Galloway, The physical impacts of microplastics on marine organisms: A review, Env. Poll., 178 (2013) 483–492.

S.L. Wright, F.J. Kelly, H. Ren, Plastic and Human Health: A Micro Issue, Environ. Sci. Technol, 51(2017) 6634-6647.

G. Readfearn, The Guardian WHO launches health review after micro¬-plastics found in 90% of bottled water, Water Res., 2 (2018) 1-47.

V. Hidalgo-Ruz, L. Gutow, R.C. Thompson, M. Thiel, Micro-plastics in the marine environment: a review of the methods used for identification and quantification, Env. Sci. Tech., 46 (2012) 3060–3075.

M. Claessens, L. Van Cauwenberghe, M.B. Vandegehuchte, C.R. Janssen, New techniques for the detection of microplastics in sediments and field collected organisms, Mar. Poll. Bull., 70 (2013) 227–233.

H.K. Imhof, J. Schmid, R. Niessner, N.P. Ivleva, C. Laforsch, A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments, Limnology and Oceanography: Meth., 10 (2012) 524–537.

M.T. Nuelle, J. H. Dekiff, D. Remy, E. Fries, A new analytical approach for monitoring micro-plastics in marine sediments, Env. Poll., 184 (2014) 161–169.

G.J.L. Martin, G. Gunnar, Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal. M. Bergmann (eds.), Mar. Anthropo. Lit. Chap., 8 (2015) 201-227.

M. Kedzierski, V. Le Tilly, P. Bourseau, H. Bellegou, G. César, O. Sire, Microplastics elutriation from sandy sediments: A granulometric approach, Mar. Poll. Bull., 107 (2016) 315-323.

J. Wagner, Z. Wang, S. Ghosal, C. M. Rochman, M. Gassel and S. Wall, Novel Method for the Extraction and Identification of Microplastics in ocean trawl and fish gut matrices, Anal. Meth., 9 (2016) 1479-1490.

S. Klein, I.K. Dimzon, T.P. Knepper, Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. M. Wagner, S. Lambert (eds.), Freshwater Microplastics, Hdb. Env. Chem., 58 (2018) 51-62.

E. N. Verla, M.J. Horsfall, A.I. Spiff, Physico chemical Characterization of Playgrounds Soils of public Schools in Owerri Metropolis, Imo State, Nigeria. Int. J. Inn. App. Studies, 13 (2015) 472-480.

E.N. Verla, A.W. Verla, C.E. Enyoh, Pollution Assessment Models Of Soils In Portharcourt City, Rivers State, Nigeria. Wor N. Nat. Sci., 12 (2017) 1-23.

C.E. Enyoh, E.A. Ihionu, A.W. Verla, P. N. Ebosie, Physicochemical Parameter Of Palm Oil And Soil From Ihube Community, Okigwe, Imo State Nigeria, Int. Letters Nat. Sci., 62 (2017) 35-43.

C.E. Enyoh, A.W. Verla, N.J. Egejuru, pH variations and chemometric assessment of borehole water in Orji, Owerri Imo State, Nigeria. J. Env. Anal. Chem., 5 (2018) 1-9.

A. W. Verla, E. N. Verla, C. E. Amaobi, C. E., Enyoh Water Pollution Scenario at River Uramurukwa Flowing Through Owerri Metropolis, Imo State, Nigeria. Int. J. App. Sci. Res., 3(2018) 40-46.

L. Jing, Risk Assessment of Heavy Metals in Surface Sediments from the Yanghe River, China. Int. J. Environ. Res. Public Health, 11 (2014) 12441-12453.

R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W. John, Lost at sea: where is all the plastic?, Sci., 304(2004) 838–838.

Y.K. Song, S.H. Hong, M. Jang, G.M. Han, M. Rani, J. Lee, A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Poll. Bull., 93(2015) 202-209.

J.P.W. Desforges, M. Galbraith, N. Dangerfield, P.S. Ross, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Poll. Bull., 79(2013) 94–99.

G. Erni-Cassola, M.I. Gibson, R.C. Thompson, J.A. Christie-Oleza, Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples, Env. Sci. Tech., 5 (2017) 13641-13648.

T. Maes, J. Rebecca, W. Nikolaus, H. Karsten, G.M. Andrew, A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7 (2017) 44501.

S.M. Angel, T.J. Kulp, T.M. Vess, Remote-Raman Spectroscopy at Intermediate Ranges Using Low-Power cw Lasers, Appl. Spectrosc., 46 (1992) 1085–1091.

R. Goodacre, D.B. Kell, Pyrolysis mass spectrometry and its applications in biotechnology, Curr. Op. Biotech, 7 (1996) 20–28.

G. Guido, Characterization of Polymers and Plastics Using an Elemental Analyzer, (2016) .

K. Liliana, G. Guido, Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer, Application note, 42230 (2016) 1-5.

S. Morét-Ferguson, K.L. Law, G. Proskurowski, E.K. Murphy, E.E. Peacock, C.M. Reddy, The size, mass, and composition of plastic debris in the Western North Atlantic Ocean, Mar. Poll. Bull., 60 (2010) 1873–1878.

P.M. Peacock, C.N. McEwen, Mass Spectrometry of Synthetic Polymers, Anal. Chem., 78(2006) 3957–3964.

R. K. Erwin, K. Mitsuhiro, G. Margit, J. Hans-Gerd, Hyphenation of aqueous liquid chromatography to pyrolysis-gas chromatography and mass spectrometry for the comprehensive characterization of water-soluble polymers, J. Chrom. A,1186 (2008) 222–227.

P. Eckerle, M. Pursch, H.J. Cortes, K. Sun, B. Winniford, J. Luong, Determination of short-chain branching content in polyethylene by pyrolysis comprehensive multidimensional gas chromatography using low thermal mass column technology, J. Sep. Sci, 1(2008) 3416–3422.

E. Fries, J.H. Dekiff, J. Willmeyer, M.T. Nuelle, Ebert M., D. Remy, Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy, Environ. Sci. Process Impacts, 15(2013) 1949-1956.

P. Kusch, Pyrolysis-Gas Chromatography/Mass Spectrometry of Polymeric Materials. Advanced Gas Chromatography-Progress in Agricultural, Biomedical and Industrial Applications, Dr. Mustafa Ali Mohd (Ed.), In. Tech., 6 (2012) 21-24.

A.J. Underwood, M.G. Chapman, M.A. Browne, Some problems and practicalities in design and interpretation of samples of microplastic waste, Anal. Methods,9(2017) 1332–1345.

T. Matthias, H. Elena, K.F. Elke, Nile Red Staining as a Subsidiary Method for Microplastic Quantification: A Comparison of Three Solvents and Factors Influencing Application Reliability, DRP J. Earth Sci. Env. Studies, 2(2017) 1-8.

R, Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Law Sci. Adv, 3(2017).

W. J. Shim, Y.K. Song, S.H. Hong, M. Jang, Identification and quantification of microplastics using Nile Red staining, Mar. Poll. Bull, 104(2016) 109-117.

Z.M. Wang, J. Wagner, S. Ghosal, G. Bedi, S. Wall, SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total. Environ, 603-604(2017) 616-626.

M. Eriksen, S. Mason, S. Wilson, C. Box, A. Zellers, W. Edwards, Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Poll. Bull, 77(2013) 177–182.

M. Kerstin, N. Fredrik Screening Of Microplastic Particles In And Down-Stream A Wastewater Treatment Plant. IVL Swedish Environmental Research Institute, Stockholm (2014) 1-22.

I. W. Levin, R. Bhargava Fourier transform infrared vibrational spectroscopicimaging: Integrating microscopy and molecular recognition, Annual Rev. Phys. Chem, 56(2005) 429–474.

J. P. Harrison, J.J. Ojeda, M.E. Romero-Gonzalez, The applicability of reflectance micro- Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments, Sci. Total. Environ, 416(2012) 455–463.

M. Bradley, S. Suja, L. Steven, W. Stephan, Tracking Microplastics in the Environment via FT-IR Microscopy, Spectroscopy, 32(2017) 17–23.

S. Saarakkala, L. Rieppo, J. Rieppo, J. S. Jurvelin, Fourier Transform Infrared (FTIR) Microspectroscopy of Immature, Mature and Degenerated Articular Cartilage.Microscopy: Science, Technology, Applications and Education, A. Méndez-Vilas and J. Díaz (Eds.), Formatex (2010).

S. T. Alexander, S. Melanie, P.H. Jesse, J.O. Jesús, Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FTIR imaging, Anal. Chem, 87(2015) 6032-6040.

M. M. Reddy, M. Deighton, R.K. Gupta, S.N. Bhattacharya, R. Parthasarathy, Biodegradation of oxo-biodegradable polyethylene. J Appl. Polym. Sci 111(3), (2009) 1426–1432.

S. Schlücker, Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy, J. Biophotonics, 4(2011) 453–463.

D.N. Sathyanarayana, Vibrational spectroscopy: theory and applications, book, 2015.

P.D. Taylor, O. Vinn, A. Kudryavtsev, J.W. Schopf, Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta), J. Struc. Bio, 171(2010) 402–405.

G. Adrian, C.P. flavius, S. Virginie, S. Chris, N. Ioan,Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation, EPJ Tech. Instrument, 2(2015) 6-9.

A. Kappler, F. Windrich, M.G.J. Loder, M. Malanin, Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measuremen, Anal. Bional. Chem, 407(2015) 6791-6801.

M. Rocchia, I. Ruff, A. Vianello, Microplastic identification and characterization by Raman imaging spectroscopy, Thermo, Fisher Scientific Inc., 8 (2017) 1-5.

M. Tirrel, Fundamentals of polymer solutions, Talor and francis, 2018.

–Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Comprehensive Analytical Chemistry, 75. 10-19.

L.M.R. Mendoza, P.R. Jones, Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre, Env. Chem., 12(2015) 611-617.

A.J. Garratt-Reed, D.C. Bell, Energy Dispersive X-Ray Analysis in the Electron Microscope, BIOS Scientific Publishers Limited, Oxford, 2003.

Health and environment
How to Cite
wirnkor, V., Ebere, E., & Ngozi, V. (2019). Microplastics, an Emerging Concern: A Review of Analytical Techniques for Detecting and Quantifying Microplatics. Analytical Methods in Environmental Chemistry Journal, 2(2), 13-30. https://doi.org/10.24200/amecj.v2.i2.57
Review Article