Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
Research Article, Issue 1
Analytical Methods in Environmental Chemistry Journal
Journal home page: www.amecj.com/ir
AMECJ
Benzene extraction in environmental samples based on the
mixture of nanoactivated carbon and ionic liquid coated
on fused silica ber before determination by headspace
solid-phase microextraction-gas chromatography
Afsaneh Afzali
a,*
, Hossein Vahidi
b
and Saeed Fakhraie
c
a
Department of Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
b
Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of
Advanced Technology, Kerman, Iran
c
Chemistry Department, Yasouj University, P.O. Box 7483-75918, Yasouj, Iran
ABSTRACT
In this study, the mixture of nano activated carbon (NAC) and ionic
liquid (3-triphenylphosphonio-propane-1-sulfonate; C
21
H
21
O
3
PS)
was coated on
     
         
soil and vegetables samples (1.0 g, n=50) surrounding a chemical

 
        
of gas chromatography    
All effected parameters such as the sorbent mass, the amount of




o
C (10 mg of NAC and 0.1 g of ionic

      

and 127.2 mg g
-1
       

         
other nanostructures.
Keywords:
Soil and vegetables,
Nano activated carbon,
Ionic liquid,
Headspace solid phase micoextraction,
Gas chromatography spectrometry
ARTICLE INFO:
Received 2 Nov 2020



*Corresponding Author: 

https://doi.org/10.24200/amecj.v4.i01.134
------------------------
1. Introduction
Recently different sources of volatile organic
     
in atmospheric air. VOC’s consist of dangerous
compounds which were produced due to the
       
other chemical activity [1-4]   
of refrigerants, plastics, adhesives, paints, and
petroleum products is composed of VOCs [5].

caused cancer in human body 
the analysis of trace volatile organic compounds
(VOCs) in exhaled breath could potentially provide
rapid screening procedures to diagnose and monitor
the diseases of the lungs.   
showed that the earlier detection VOCs with GC-



       
detect the cancer disease in primary stages. Various
     
RNA, and cells are used in the diagnosis of cancer
in human body     
    


accumulated in liver, renal, and CNS and caused to


       
was reported by international agency for research
on cancer (IARC) [10,11]   
        
  
is the most dangerous material and cause to bone
damage, dysfunction of CNS, damage of liver and
respiratory tract. Based on US occupational safety
and health administration (OSHA) and centers for
disease control and prevention, national institute
for occupational safety and health(NIOSH), the
        
   [12].
     
degradation, the catalytic oxidation, the adsorptive
concentration-catalytic oxidation, the photocatalytic
oxidation, and the plasma catalytic oxidation were
used for removal and determination of VOCs in
water samples [13]    
 include,    
      [14].
       

must be controlled [15]. Nanoparticles (NPs) have
been highly used for removal of environmental

the unique properties of NPs, the adsorption processe
[16].


from aqueous environments [17]   
studies, the different methods such as, adsorption
, the photo-catalytic oxidation and thermal
oxidation [20] were used for removal of VOC’s
       
       
and determined in waters and wastewater samples

      
     

[15]. Recently,
the activated carbon based on micro pores and
heterogeneous surface functional groups was used
     
such as water and wastewater samples [21, 22]. Also,
the activated carbon was most commonly used as
absorbent for VOC’s removal from air and waters.
By previous researches, the adsorption capacity of
activated carbon was reported and depended on its
surface area, pore volume, porosity and chemical
functional groups. In addition, the other nano-carbon
      

removal from environment matrixes [23, 24].


extraction/separation/determination in soil and



2. Experimental
2.1. Apparatus
Gas chromatography based on air /gas loop injection

      
     
sample into the carrier gas stream and valves were
also used to inject sample gases/ liquids in gas
      

     
       
2
)

–1
was used as a carrier


Germany.
70
2.2. Reagents and Materials
      
     

-1
) was prepared (0.1,
0.2. 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 ppm) and placed on

     
purchased from Sigma and then, the eight solutions
      
     
such as HNO
3
, HCl, acetone, methanol and ethanol
       
       
      
       

  
(3-triphenylphosphonio-propane-1-sulfonate;
C
21
H
21
O
3
PS; CAS N

1).
2.3. Synthesis of Nano activated carbon (NAC)

        
        
     
       
      
      
(porous).

and placed in the porcelain crucible, then

for 2.0 hours. By decreasing temperature
up to 25
o
C, the product is ready for weight.
     
heating method caused to create
the Nano
     .


  

min; hold: 1h) in a tube furnace and cooling
down to room temperature under N
2


-1
) [25,26].
2.4. Characterization
     
      
      
      
the sorbent including surface area, pore volume, and
      
   
mini porosimeter (Bell Japan, Inc.). Prior to analysis,
the samples were degassed under vacuum at 300


of the sorbents were calculated by the Brunauer-
   




      
of sorbent was examined by transmission electron

2.5. Benzene Extraction Procedure
By procedure, 10 mg of NAC and 0.1 g of ionic liquid


up to 55
o


of       
vial, 1 g of powder samples (soil, vegetables) were
placed in the bottom of vial and were closed in glass
 

o

soil and vegetables samples which were vapored/
       
 
        

        





calibration curve was calculated and evaluated.
Anal. Method Environ. Chem. J. 4 (1) (2021) 68-78
71
3. Results and Discussion
3.1. FTIR of ACNPs
   
NAC
was shown in
.
-1
was related to the

cm
-1

-1
were related to asymmetric and
symmetric C–H stretching vibration of CH
2
bond.
       
 at 1710 cm
-1

-1

1613 cm
-1

     
   
-1
to

-1
belonged to
C-H and CH=CH
2
vibrations in aromatic rings.
Fig.1. 

5001000150020002500300035004000
% Transmitance
Wavenumber (cm
-1
)
O-H
C-H
C=O
C=C
C-O
Fig.2.

NAC
