A review: Analytical methods and health risk assessment for inorganic, organic, and total arsenic content in rice samples

Volume 6, Issue 02, Pages 85-108, Jun 2023 *** Field: A review: Analytical Method For Arsenic Determination in Rice

  • Jalal Hassan Division of Toxicology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Postal Code:1419963111, Tehran, Iran
  • Mohammad Kazem Koohi Division of Toxicology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Postal Code:1419963111, Tehran, Iran
  • Mohammad Amrollahi-Sharifabadi, Corresponding Author, Department of Basic Sciences, Faculty of Veterinary Medicine, Lorestan University, Postal Code: 68151-44316, Khorramabad, Iran
  • Semire Olubusayo Funmlola Department of Chemi s try, Faculty of Science, University of Lagos, Po s tal Code: 100213, Akoka, Lagos, Nigeria
Keywords: Analytical method, Arsenic, Rice, Risk assessment, Food Chemistry, Toxicology

Abstract

Determining the level of contaminants in rice is very important because it is one of the staple foods consumed by most people worldwide. Therefore, the quantity of arsenic in rice has become a health concern because rice cultivars have the property of accumulating arsenic in their grains. As a result, various societies have mandated the measurement of arsenic in rice by using different analytical chemistry methodologies, including atomic absorption spectrometry (AAS, ETAAS, HG-AAS) after sample preparation methods such as solid phase microextraction (SPME) and dispersive liquid-liquid extraction (DLLE). The content of arsenic in rice is an essential prerequisite data to incorporate in the health risk assessment. By having such information, it can be possible to determine the risk ratio calculations and identify which countries produce rice with less risk for human consumption. This review aimed to present the analytical methods used for the analysis of inorganic, organic, and total arsenic contents in rice and introduced the methodology for health risk assessment and its related calculations by using the data of inorganic and total arsenic quantifications in the rice along with the per capita of the consumption of rice.

References

LD. Massaquoi, H. Ma, X.H. Liu, Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater, Environ. Sci. Pollut. Res. Int., 22 (2015) 18456-18468. https://doi.org/10.1007/s11356-015-5131-1

A. Mudhoo, S.K. Sharma, V.K. Garg, Arsenic: an overview of applications, health, and environmental concerns and removal processes, Crit. Rev. Environ. Sci. Technol., 41 (2011) 435-519. https://doi.org/10.1080/10643380902945771

NJ. Raju, Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies, Environ. Res., 203 (2022) 111782. https://doi.org/10.1016/j.envres.2021.111782

P. Wexler, Toxicology in the middle ages and renaissance, Academic Press; 2017. https://www.ncbi.nlm.nih.gov/books/NBK513409/

N. Yang, A. Sheridan, P. Wexler, Encyclopedia of Toxicology, Elsevier publisher, 2014. https://corp.credoreference.com/component/booktracker/edition/9864.html

N.P. Paul, AE. Galván, K. Yoshinaga-Sakurai, Arsenic in medicine: past, present and future, Biometals., 36 (2023) 283–301. https://doi.org/10.1007/s10534-022-00371-y

S.N. Michaleas, K. Laios, G. Tsoucalas, Theophrastus Bombastus Von Hohenheim (Paracelsus) (1493–1541): The eminent physician and pioneer of toxicology, Toxicol. Rep., 8 (2021) 411-414. https://doi.org/10.1016/j.toxrep.2021.02.012

R. Scussel, AC. Feltrin, E. Angioletto, Ecotoxic, genotoxic, and cytotoxic potential of leachate obtained from chromated copper arsenate-treated wood ashes, Environ. Sci. Pollut. Res. Int., 29 (2022) 41247-41260. https://doi.org/10.1007/s11356-021-18413-2

J-Y. Chung, S-D. Yu, Y-S. Hong, Environmental source of arsenic exposure, J. Prev. Med. Public. Health., 47 (2014) 253–257. https://doi.org/10.3961/jpmph.14.036

FX. Han, Y. Su, DL. Monts, Assessment of global industrial-age anthropogenic arsenic contamination, Naturwissenschaften., 90 (2003) 395-401. https://doi.org/10.1007/s00114-003-0451-2

Y. Hu, J. Liang, Y. Xia, 2D arsenene and arsenic materials: Fundamental properties, preparation, and applications, Micro and Nano: Small, 18 (2022) 2104556. https://doi.org/10.1002/smll.202104556

DRS. Middleton, VA. McCormack, MJ Watts, Environmental geochemistry and cancer: a pertinent global health problem requiring interdisciplinary collaboration, Environ. Geochem. Health, 42 (2020) 1047-1056. https://doi.org/10.1007/s10653-019-00303-9

MM. Rahman, JC. Ng, R. Naidu, Chronic exposure of arsenic via drinking water and its adverse health impacts on humans, Environ. Geochem. Health, 31 (2009) 189-200. https://doi.org/10.1007/s10653-008-9235-0

S. Kapaj, H. Peterson, K. Liber, Human health effects from chronic arsenic poisoning–a review, J. Environ. Sci. Health A, 41 (2006) 2399-2428. https://doi.org/10.1080/10934520600873571

K. Moon, E. Guallar, A. Navas-Acien, Arsenic exposure and cardiovascular disease: an updated systematic review, Curr. Atheroscler. Rep., 14 (2012) 542-555. https://doi.org/10.1007/s11883-012-0280-x

A. Timmis, P. Vardas, N. Townsend, European society of cardiology: cardiovascular disease statistics, Eur. Heart J., 43 (2022) 716-799. https://doi.org/10.1093/eurheartj/ehab892

T. Münzel, O. Hahad, M. Sørensen, Environmental risk factors and cardiovascular diseases: a comprehensive expert review, Cardiovasc. Res., 118 (2022) 2880-2902. https://doi.org/10.1093/cvr/cvab316

A. Domingo-Relloso, K. Makhani, AL. Riffo-Campos, Arsenic exposure, blood DNA methylation, and cardiovascular disease, Circ. Res., 131 (2022) e51-e69. https://doi.org/10.1161/CIRCRESAHA.122.320991

VD, Martinez, EA, Vucic, DD, Becker-Santos, Arsenic exposure and the induction of human cancers, J. Toxicol. 2011 (2011) 431287. https://doi.org/10.1155/2011/431287

S. Liu, M. Costa, Carcinogenicity of metal compounds, Handbook on the Toxicology of Metals: Elsevier; p.p. 507-542, 2022. https://booksite.elsevier.com

Y. Wang, S. Wang, P. Xu, Review of arsenic speciation, toxicity and metabolism in microalgae, Rev. Environ. Sci. Biotechnol., 14 (2015) 427-451. https://doi.org/10.1155/2011/43128710.1007/s11157-015-9371-9

M. Huang, S. Zhou, Sun B, Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci. Total. Environ., 405 (2008) 54-61. https://doi.org/10.1016/j.scitotenv.2008.07.004

MA. Davis, AJ. Signes-Pastor, M. Argos, Assessment of human dietary exposure to arsenic through rice, Sci. Total. Environ., 586 (2017) 1237-1244. https://doi.org/10.1016/j.scitotenv.2017.02.119

YJ. Zavala, JM. Duxbury, Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain, Environ. Sci. Technol., 42 (2008) 3856-3860. https://doi.org/10.1021/es702747y

BL. Batista, JM. Souza, SS. De Souza, Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption, J. Hazard. Mater., 191 (2011) 342-348. https://doi.org/10.1016/j.jhazmat.2011.04.087

D. Gilbert-Diamond, KL. Cottingham, JF. Gruber, Rice consumption contributes to arsenic exposure in US women, Proc. Natl. Acad. Sci. USA., 108 (2011) 20656-20660. https://doi.org/10.1073/pnas.110912710

BL. Batista, JMO. Souza, SS. De Souza, Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption, J. Hazard. Mater., 191 (2011) 342-348. https://doi.org/10.1016/j.jhazmat.2011.04.087

MR. Karagas, T. Punshon, M. Davis, Rice intake and emerging concerns on arsenic in rice: A review of the human evidence and methodologic challenges, Curr. Environ. Health Rep., 6 (2019) 361-372. https://doi.org/10.1007/s40572-019-00249-1

MA. Rahman, H. Hasegawa, High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking, Sci. Total. Environ., 409 (2011) 4645-4655. https://doi.org/10.1016/j.scitotenv.2011.07.068

P. Williams, A. Price, A. Raab, Variation in arsenic speciation and concentration in paddy rice related to dietary exposure, Environ. Sci. Technol., 39 (2005) 5531-5540. https://doi.org/10.1021/es0502324

N. Liao, E. Seto, B. Eskenazi, A comprehensive review of arsenic exposure and risk from rice and a risk assessment among a cohort of adolescents in Kunming, China, Int. J. Environ. Res. Public Health, 15 (2018) 2191. https://doi.org/10.3390/ijerph15102191

PB. Tchounwou, JA. Centeno, AK. Patlolla. Arsenic toxicity, mutagenesis, and carcinogenesis–a health risk assessment and management approach, Mol. Cell. Biochem., 255 (2004) 47-55. https://doi.org/10.1023/B:MCBI.0000007260.32981.b9

HV. Aposhian, RA. Zakharyan, MD. Avram, Oxidation and detoxification of trivalent arsenic species, Toxicol. Appl. Pharmacol., 193 (2003) 1-8. https://doi.org/10.1016/S0041-008X(03)00324-7

D. Beyersmann, A. Hartwig, Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Arch. Toxicol., 82 (2008) 493-512. https://doi.org/10.1007/s00204-008-0313-y

Q. Zhong, Y. Cui, H. Wu, Association of maternal arsenic exposure with birth size: A systematic review and meta-analysis, Environ. Toxicol. Pharmacol., 69 (2019) 129-136. https://doi.org/10.1016/j.etap.2019.04.007

R. Eisler, Arsenic hazards to humans, plants, and animals from gold mining, Rev. Environ. Contamin. Toxicol., 180 (2004) 133–165. https://doi.org/10.1007/0-387-21729-0_3

Z. Karamzadeh, J. Rakhtshah, N.M. Kazemi, A novel biostructure sorbent based on CysSB/MetSB@ MWCNTs for separation of nickel and cobalt in biological samples by ultrasound assisted-dispersive ionic liquid-suspension solid phase micro extraction, J. Pharm. Biomed. Anal., 172 (2019) 285-294. https://doi.org/10.1016/j.jpba.2019.05.003.

MK. Abbasabadi, Speciation of cadmium in human blood samples based on Fe3O4-supported naphthalene-1-thiol-functionalized graphene oxide nanocomposite by ultrasound-assisted dispersive magnetic micro solid phase extraction, J. Pharm. Biomed. Anal., 189 (2020) 113455. https://doi.org/10.1016/j.jpba.2020.113455

MK. Abbasabadi, F. Hosseini, A.F. Zarandi, Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive solid phase extraction, Food. Chem., 347 (2021) 129042. https://doi.org/10.1016/j.foodchem.2021.129042

A. Raab, C. Baskaran, J. Feldmann, Cooking rice in a high water to rice ratio reduces inorganic arsenic content, J. Environ. Monit., 11 (2009) 41-44. https://doi.org/10.1039/B816906C

T. Narukawa, T. Suzuki, K. Inagaki, Extraction techniques for arsenic species in rice flour and their speciation by HPLC–ICP-MS, Talanta., 130 (2014) 213-220. https://doi.org/10.1016/j.talanta.2014.07.001

I. Pizarro, M. Gómez, MA. Palacios, Evaluation of stability of arsenic species in rice, Anal. Bioanal. Chem., 376 (2003) 102-109. https://doi.org/10.1007/s00216-003-1870-9

S. Davari, F. Hosseini, Dispersive solid phase microextraction based on aminefunctionalized bimodal mesoporous silica nanoparticles for separation and determination of calcium ions in chronic kidney disease, Anal. Methods Environ. Chem. J., 1 (2018) 57-66. https://doi.org/10.24200/amecj.v1.i01.37

H. Shirkhanloo, A. Khaligh, HZ. Mousavi, Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid-liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy, Chem. Papers, 69 (2015) 779-790. https://doi.org/10.1515/chempap-2015-0086

A. Khaligh, HZ. Mousavi, H. Shirkhanloo, Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry, RSC Adv., 5 (2015) 93347-93359. https://doi.org/10.1039/C5RA17229B

H. Shirkhanloo, HZ. Mousavi, A. Rouhollahi, Speciation and determination of trace amount of inorganic arsenic in water, environmental and biological samples, J. Chin. Chem. Soc., 58 (2011) 623-628. https://doi.org/10.1002/jccs.201190097

H. Shirkhanloo, M. Ghazaghi, A. Rashidi, Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction, Microchem. J., 130 (2017) 137-146. https://doi.org/10.1016/j.microc.2016.08.013

C. Jamshidzadeh, A new analytical method based on bismuth oxide-fullerene nanoparticles and photocatalytic oxidation technique for toluene removal from workplace air, Anal. Methods Environ. Chem. J., 2 (2019) 73-86. https://doi.org/10.24200/amecj.v2.i01.55

J. Rakhtshah, Air pollution control: The evaluation of TerphApm@ MWCNTs as a novel heterogeneous sorbent for benzene removal from air by solid phase gas extraction, Arab. J. Chem., 13 (2020) 1741-1751. https://doi.org/10.1016/j.arabjc.2018.01.011

B. Paknejad, M. Aliomrani, Is there any relevance between serum heavy metal concentration and BBB leakage in multiple sclerosis patients, Biol. Trace Elem. Res., 190 (2019) 289-294. https://doi.org/10.1007/s12011-018-1553-1

ÁH. Pétursdóttir, N. Friedrich, S. Musil, Hydride generation ICP-MS as a simple method for determination of inorganic arsenic in rice for routine biomonitoring, Anal. Methods, 6 (2014) 5392-5396. https://doi.org/10.1039/C4AY00423J

A. Nawrocka, M. Durkalec, M. Michalski, Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS, Food. Chem., 379 (2022) 132045. https://doi.org/10.1016/j.foodchem.2022.132045

T. Llorente-Mirandes, J. Calderón, JF. López-Sánchez, A fully validated method for the determination of arsenic species in rice and infant cereal products, Pure. Appl. Chem., 84 (2012) 225-238. https://doi.org/10.1351/PAC-CON-11-09-30

I. D. Urango-Cárdenas, S. Burgos-Núñez, LÁO. Herrera, Determination of arsenic chemical species in rice grains using high-performance liquid chromatography coupled to hydride generator with atomic fluorescence detector (HPLC-HG-AFS), MethodsX, 8 (2021) 101281. https://doi.org/10.1016/j.mex.2021.101281

A. Bhat, TO. Hara, F. Tian, Review of analytical techniques for arsenic detection and determination in drinking water, Environ. Sci: Adv. J., 2 (2023) 171-195. https://pubs.rsc.org/en/content/articlelanding/2023/VA/D2VA00218C

H. Shirkhanloo, A. Rouhollahi, HZ. Mousavi, Ultra-trace arsenic determination in urine and whole blood samples by flow injection-hydride generation atomic absorption spectrometry after preconcentration and speciation based on dispersive liquid-liquid microextraction, Bull. Korean. Chem. Soc., 32 (2011) 3923. http://dx.doi.org/10.5012/bkcs.2011.32.11.3923

N. D. Reich, AA. Nghiem, S. Nicholas, Determination of arsenic content in water using a silver coordination polymer, ACS Environ. Au., 2 (2021) 150-155. http://dx.doi.org/ 10.1021/acsenvironau.1c00036

K. Mao, H. Zhang, Z. Wang, Nanomaterial-based aptamer sensors for arsenic detection, Biosens. Bioelectron., 148 (2020) 111785. https://doi.org/10.1016/j.bios.2019.111785

Y. He, J. Liu, Y. Duan, A critical review of on-site inorganic arsenic screening methods, J. Environ. Sci. (China), 125 (2023) 453-469. https://doi.org/10.1016/j.jes.2022.01.034

A. Jose, A. Jana, T. Gupte, Vertically aligned nanoplates of atomically precise Co6S8 cluster for practical arsenic sensing, ACS Mater. Lett., 5 (2023) 893-899. https://doi.org/10.1021/acsmaterialslett.3c00085

M. Nabi, SM. Ghoreishi, M. Behpour, Uncertainty in analytical measurements: Approaches, evaluation methods and their comparison based on a case study of arsenic determination in rice, Mapan- J. Metrol. Soc. India, 36 (2021) 187-192. https://doi.org/10.1007/s12647-020-00422-0

C. A. Commission, Report of the eighth session of the codex committee on contaminants in foods. Joint FAO/WHO Food standards programme Codex alimentarius commission 37th session, Geneva, Switzerland, p.p.14-18, 2014. https://www.fao.org/news/story/en/item/238558/icode/

S. M. Cahill, Arsenic in rice and rice products risk assessment report, U.S. Food and Drug Administration (US-FDA), 2016. http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/default.htm

C. Balbo, Ł. Woźniak, Dietary exposure and risk characterisation of multiple chemical contaminants in rye‐wheat bread marketed in Poland, EFSA J., 20 (2022) e200911. https://doi.org /10.2903/j.efsa.2022.e200911

N. Ferreira, B. Henriques, T. Viana, Validation of a methodology to quantify macro, micro, and potentially toxic elements in food matrices, Food Chem., 404 (2023) 134669. https://doi.org/10.1016/j.foodchem.2022.134669

Á. A. Carbonell-Barrachina, X. Wu, A. Ramírez-Gandolfo, Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA, Environ. Pollut., 163 (2012) 77-83. https://doi.org/10.1016/j.envpol.2011.12.036

G. Raber, N. Stock, P. Hanel, An improved HPLC–ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish, Food Chem., 134 (2012) 524-532. https://doi.org/10.1016/j.foodchem.2012.02.113

A. Sommella, C. Deacon, G. Norton, Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type, Environ. Pollut., 181 (2013) 38-43. https://doi.org/10.1016/j.envpol.2013.05.045

I. N. Pasias, NS. Thomaidis, EA. Piperaki, Determination of total arsenic, total inorganic arsenic and inorganic arsenic species in rice and rice flour by electrothermal atomic absorption spectrometry, Microchem. J., 108 (2013) 1-6. https://doi.org/10.1016/j.microc.2012.11.008

K. Phan, S. Sthiannopkao, S. Heng, et al, Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia, J. Hazard. Mater., 262 (2013) 1064-1071. https://doi.org/10.1016/j.jhazmat.2012.07.005

A.M. Shraim, Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium, Arab. J. Chem., 10 (2017) S3434-S3443. https://doi.org/10.1016/j.arabjc.2014.02.004

S.C. Sofuoglu, H. Güzelkaya, Ö. Akgül, Speciated arsenic concentrations, exposure, and associated health risks for rice and bulgur, Food Chem. Toxicol., 64 (2014) 184-191. https://doi.org/10.1016/j.fct.2013.11.029

W. Jiang, Q. Hou, Z. Yang, Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content, Environ. Pollut., 188 (2014) 159-165. https://doi.org/10.1016/j.envpol.2014.02.014

G. Chen, T. Chen, SPE speciation of inorganic arsenic in rice followed by hydride-generation atomic fluorescence spectrometric quantification, Talanta, 119 (2014) 202-206. https://doi.org/10.1016/j.talanta.2013.11.016.

G-X. Sun, PN. Williams, Y-G. Zhu, Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments, Environ. Int., 35 (2009) 473-475. https://doi.org/10.1016/j.envint.2008.07.020

W. Maher, S. Foster, F. Krikowa, Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES, Environ. Sci. Technol., 47 (2013) 5821-5827. https://doi.org/10.1021/es304299v

E. Sanz, R. Munoz-Olivas, C. Camara, et al, Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain, J. Environ. Sci. Health A., 42 (2007) 1695-1705. https://doi.org /10.1080/10934520701564178

C. Cerveira, D. Pozebon, DP. de Moraes, Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS), Anal. Methods, 7 (2015) 4528-4534. https://doi.org/10.1039/C5AY00563A

T. Q. Nguyen, T-T. Tran-Lam, HQ. Nguyen, Assessment of organic and inorganic arsenic species in Sengcu rice from terraced paddies and commercial rice from lowland paddies in Vietnam, J. Cereal Sci., 102 (2021) 103346. https://doi.org /10.1016/j.jcs.2021.103346

H-L. Chen, C-C. Lee, W-J. Huang, Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population, Environ. Sci. Pollut. Res. Int., 23 (2016) 4481-4488. https://doi.org/10.1007/s11356-015-5623-z

M. Cano‐Lamadrid, S. Munera‐Picazo, F. Burló, Total and inorganic arsenic in Iranian rice, J. Food Sci., 80 (2015) T1129-T1135. https://doi.org/10.1111/1750-3841.12849

G. Carracelas, J. Hornbuckle, M. Verger, Irrigation management and variety effects on rice grain arsenic levels in Uruguay, J. Sci. Food Agric., 1 (2019) 100008. https://doi.org/10.1016/j.jafr.2019.100008

RA. Althobiti, NW. Sadiq, D. Beauchemin, Realistic risk assessment of arsenic in rice, Food. Chem., 257 (2018) 230-236. https://doi.org/10.1016/j.foodchem.2018.03.015

S. Ruangwises, P. Saipan, B. Tengjaroenkul, Total and inorganic arsenic in rice and rice bran purchased in Thailand, J. Food Prot., 75 (2012) 771-774. https://doi.org/10.4315/0362-028X.JFP-11-494

S. S. Farías, A. Londonio, C. Quintero, On-line speciation and quantification of four arsenical species in rice samples collected in Argentina using a HPLC–HG–AFS coupling, Microchem. J., 120 (2015) 34-39. https://doi.org/10.1016/j.microc.2014.12.010

M. Burgman, Risks and decisions for conservation and environmental management, Cambridge University Press, 2005.

https://doi.org/10.1017/CBO9780511614279

P. Coppens, MF. Da Silva, S. Pettman, European regulations on nutraceuticals, dietary supplements and functional foods: a framework based on safety, Toxicol., 221 (2006) 59-74. https://doi.org/10.1016/j.tox.2005.12.022

T. Aven, O. Renn, Risk management and governance: Concepts, guidelines and applications, Springer Science & Business Media., Volume 16, p.p. 278, 2010. https://doi.org/10.1007/978-3-642-13926-0

C. N. Haas, JB. Rose, C. Gerba, Risk assessment of virus in drinking water, Risk anal., 13 (1993) 545-552.https://doi.org /10.1111/j.1539-6924.1993.tb00013.x

C. D. Klaassen, Risk assessment. Casarett and Doull’s toxicology: The basic science of poisons, 9 edition, McGraw Hill / Medical publisher, 2018 107-128. https://www.amazon.ca/Casarett-Doulls-Toxicology-Science-Poisons/dp/1259863743

R. Van der Oost, J. Beyer, NPE. Vermeulen, Fish bioaccumulation and biomarkers in environmental risk assessment: a review, Environ. Toxicol. Pharmacol., 13 (2003) 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6

GW. Suter II, T. Vermeire, WR. Munns, Framework for the integration of health and ecological risk assessment, Human Ecol. Risk Assess., 9 (2003) 281-301. https://doi.org/10.1080/713609865

H. S. Kim, Y. J. Kim, Y.R. Seo, An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention, J. Cancer Prev., 20 (2015) 232-340. https://doi.org/10.15430/JCP.2015.20.4.232

A. Ogunlaja, O.O. Ogunlaja, D.M. Okewole, Risk assessment and source identification of heavy metal contamination by multivariate and hazard index analyses of a pipeline vandalised area in Lagos State, Nigeria Sci. Total Environ., 651 (2019) 2943-2952. https://doi.org/10.1016/j.scitotenv.2018.09.386

P. Morra, S. Bagli, G. Spadoni, The analysis of human health risk with a detailed procedure operating in a GIS environment, Environ. Int., 32 (2006) 444-454. https://doi.org/10.1016/j.envint.2005.10.003

D.G. Barnes, M. Dourson, P. Preuss, Reference dose (RfD): description and use in health risk assessments, Regul. Toxicol. Pharmacol., 8 (1988) 471-486. https://doi.org/10.1016/0273-2300(88)90047-5

P. J. Gray, C.K. Tanabe, S.E. Ebeler, A fast and fit-for-purpose arsenic speciation method for wine and rice, J. Anal. At. Spectrom., 32 (2017) 1031-1034. https://doi.org/10.1039/C7JA00041C

I. Hojsak, C. Braegger, J. Bronsky, Arsenic in rice: a cause for concern, J. Pediatr. Gastroenterol. Nutr., 60 (2015) 142-145. https://doi.org/10.1097/MPG.0000000000000502

Y-G. Zhu, P.N. Williams, A.A. Meharg, Exposure to inorganic arsenic from rice: a global health issue?, Environ. Pollut., 154 (2008) 169-171. https://doi.org/10.1016/j.envpol.2008.03.015

S. Sabbagh, Arsenic contamination in rice, radiation and chemical methods of measurement, and implications for food safety, J. Food Sci. Technol., 60 (2023) 1870-1887. https://link.springer.com/article/10.1007/s13197-022-05469-2

M. Naseri, Z. Rahmanikhah, V. Beiygloo, Effects of two cooking methods on the concentrations of some heavy metals (cadmium, lead, chromium, nickel and cobalt) in some rice brands available in Iranian Market, J. Chem. Health Risks, 4 (2014) 65-72. https://jchr.damghan.iau.ir/article_544068.html

S. Peng, Q. Tang, Y. Zou, Current status and challenges of rice production in China, Plant Prod. Sci., 12 (2009) 3-8. https://doi.org/10.1626/pps.12.3

L. Gao, Q. Gao, M. Lorenc, Comparison of total factor productivity of rice in China and Japan, Sustainability., 14 (2022) 7407. https://doi.org/10.3390/su14127407

H. Khosravi-Boroujeni, N. Sarrafzadegan, N. Mohammadifard, White rice consumption and CVD risk factors among Iranian population, J. Health Popul. Nutr., 31 (2013) 252-261. https://doi.org/10.3329/jhpn.v31i2.16390

H. Yazdanpanah, H. Rastegar, Exposure assessment for some pesticides through rice consumption in Iran using a multiresidue analysis by GC-MS (Winter 2018), Iran. J. Pharm. Res., 17 (2018) 124-139. https://brieflands.com/journals/iranian-journal-of-pharmaceutical-research/

M. Amirahmadi, H. Yazdanpanah, F. Kobarfard, Exposure assessment for some pesticides through rice consumption in Iran using a multiresidue analysis by GC-MS, Iran. J. Pharm. Res., 17 (2018) 124-139. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937084/

A.A. Meharg, P.N. Williams, E. Adomako, Geographical variation in total and inorganic arsenic content of polished (white) rice, Environ. Sci. Technol., 43 (2009) 1612-1617. https://doi.org /10.1021/es802612a

S.T.Z. Guaman, WC. Ccahua, NC. Rafael, Estimation of arsenic contents in rice purchased on Peruvian markets and estimation of dietary intake by Peruvians through rice consumption, Sci. Agropecu., 12 (2021) 185-191. http://dx.doi.org/10.17268/sci.agropecu.2021.021

A. Chamannejadian, G. Sayyad, A. Moezzi, Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils, J. Environ. Health Sci. Eng., 10 (2013) 1-5. https://doi.org/10.1186/1735-2746-10-28

A. Heikens, Arsenic contamination of irrigation water, soil and crops in Bangladesh: Risk implications for sustainable agriculture and food safety in Asia, Rap Publication (FAO), 2006. https://www.fao.org/3/ag105e/AG105E00.htm

X. Li, K. Xie, B. Yue, Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population, Sci. China Chem., 58 (2015) 1898-1905. https://doi.org/10.1007/s11426-015-5443-5

OECD Food and Agricultural Reviews Innovation, Agricultural Productivity and Sustainability in teh United States , 268 pages, OECD publisher, 2016. https://www.amazon.ca/Innovation-Agricultural-Productivity-Sustainability-United/dp/9264261214

M. Menon, W. Dong, X. Chen, Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements, Sci. Total. Environ., 755 (2021) 143341. https://doi.org/10.1016/j.scitotenv.2020.143341

O. Atiaga, LM. Nunes, XL. Otero, Effect of cooking on arsenic concentration in rice, Environ. Sci. Pollut. Res., 27 (2020) 10757-10765. https://doi.org/10.1007/s11356-019-07552-2

P. Kumarathilaka, S. Seneweera, YS. Ok, Arsenic in cooked rice foods: assessing health risks and mitigation options, Environ Int., 127 (2019) 584-591. https://doi.org/10.1016/j.envint.2019.04.004

Published
2023-06-30
How to Cite
Hassan, J., Koohi, M. K., Amrollahi-Sharifabadi, M., & Funmlola, S. (2023). A review: Analytical methods and health risk assessment for inorganic, organic, and total arsenic content in rice samples. Analytical Methods in Environmental Chemistry Journal, 6(02), 85-108. https://doi.org/10.24200/amecj.v6.i02.226
Section
Review Article