Dispersive solid phase microextraction based on aminefunctionalized bimodal mesoporous silica nanoparticles for separation and determination of calcium ions in chronic kidney disease

Volume1,Issue01,Pages57-66,Ar-AMC-37 *** Filed: Human Bioanalysis

  • Sara Davari
  • Farnaz Hosseini
  • Hamid Shirkhanloo RIPI
Keywords: Calcium, Amine-functionalized bimodal, mesoporous silica nanoparticles, Ionic liquid, Human Blood, Ultrasound assisted- dispersive, solid-liquid multiple phase, microextraction

Abstract

The ultrasound assisted- dispersive solid phase microextraction method (USA-SPME) was used for in-vitro study on separation/extraction of calcium ions in human blood of chronic kidney disease (CKD). In this procedure, amine-functionalized bimodal mesoporous silica nanoparticle (NH2-UVM7) as a solid phase was used for in-vitro separation/extraction of calcium from blood/serum samples. Moreover, a mixture of NH2-UVM7 with ionic liquid and acetone (S/IL/Ac) was added to serum/blood sample containing of Ca (II) at pH of 7.3. After ultrasonic bath and centrifuging, NH2-UVM7/ IL settled down in bottom of tube, which was extracted Ca (II) ions by binding to amine group ([Ca]2+ →: NH2 ─ UVM7). The concentration of Ca (II) was determined by flame atomic absorption spectrometry (F-AAS, N2O, C2H2) after back extraction remained adsorbent in IL by 0.5 mL of HNO3 (0.5 M).

Author Biography

Sara Davari

Islamic Azad University of Pharmaceutical Sciences (IAUPS), Medical Nano Technology Tehran, Iran

References

K.M. Gallant, D.M. Spiegel, Calcium balance in chronic kidney disease, Curr. Osteoporos. Rep., 15 (2017) 214-221.

P.H.F. Gois, M. wolley, D. Ranganathan, A. C. segura, Vitamin D deficiency in chronic kidney Disease: recent evidence and controversies, Int .J. Environ. Res. Public Health, 15 (2018) 1773-1780.

P.H.F. Gois, D Ferreira, S. Olenski, A.C. Seguro, Vitamin D and infectious diseases: simple bystander or contributing factor, Nutrients, 9 (2017) 651.

G. Jean, J.C. Souberbielle, C. Chazot, Vitamin D in chronic kidney disease and dialysis patients, Nutrients, 9 (2017) 328.

J. Blaine, M. Chonchol, M. Levi, Renal control of calcium, phosphate, and magnesium homeostasis, Clin. J. Am. Soc. Nephrol., 10 (2015) 1257-1272.

M. Brini, D. Ottolini, T. Calì, E. Carafoli, Calcium in Health and Disease: Interrelations between essential metal ions and human diseases, Metal ions in life sciences, Chapter 4, Springer Netherlands (2013).

J. Lappe, P. Watson, D. Travers-Gustafson, Effect of vitamin D and calcium supplementation on cancer incidence in older women: a randomized clinical trial, JAMA, 317.12 (2017) 1234-1243.

B. S. F. Alves, F. I. M. Carvalho, A.S. Cruz, K. G.

F. Dantas, Determination of Ca, Mg, Na, and K in biodiesel of oilseed from northern Brazil, Revista Virtual de Quimica, 10 (2018) 542-550.

L. Poirier, J. Nelson, D. Leong, L. Berhane, P. Hajdu,

F. Lopez-Linares, Application of ICP-MS and ICP-OES on the determination of nickel, vanadium, iron, and calcium in petroleum crude oils via direct dilution, Energy and Fuels, 30 (2016) 3783-3790.

B. Han, M. Ge, H. Zhao, Y. Yan, J. Zeng, T. Zhang, W. Zhou, J. Zhang, J. Wang, C. Zhang, Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry, Clin. Chem. Lab. Med., 56 (2017)

- 58.

Y. Yan, M. Ge, R. Ma, H. Zhao, D. Wang, C. Hu, et al, A candidate reference method for serum calcium measurement by inductively coupled plasma mass spectrometry, Clin. Chim. Acta, 461 (2016) -141 145.

S. Li, J. Wang, Measurement of Calcium in human serum by dynamic reaction cell and two-way ID–ICP–MS, Chem. Anal. Meter., 24 (2015).

J. Płotka-Wasylka, M. Frankowski, V. Simeonov, Ż. Polkowska, J. Namieśnik, Determination of metals content in wine samples by inductively coupled plasma-mass spectrometry, Molecules, 23 (2018) 2886.

H. Shirkhanloo, M. Ghazaghi, A. Rashidi, A. Vahid, Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction, Microchem. J., 130 (2017)

- 146.

H. Zhang, Y. Yuan, Y. Sun, C. Niu, F. Qiao, H. Yan, An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography, Analyst, 143 (2018) 175-181.

A.C. Sotolongo, E.M. Martinis, R.G. Wuilloud, An easily prepared graphene oxide–ionic liquid hybrid nanomaterial for micro-solid phase extraction and preconcentration of Hg in water samples, Anal. Method., 10.3 (2018) 338-346.

I. García-Díaz, F. López, F. Alguacil, Carbon Nanofibers: A New Adsorbent for Copper Removal from Wastewater, Metals, Metals, 8 (2018) 914.

R. Pournima, M. Shrikant, A short overview: Heavy metal toxicity, health hazards and their removal technique by natural adsorbents, Inter. J. Curr. Eng. Technol., 8 (2018) 400-406.

E. Ciotta, P. Prosposito, P. Tagliatesta, C. Lorecchio, L. Stella, S. Kaciulis, P. Soltani, E. Placidi, R. Pizzoferrato, Discriminating between different heavy metal ions with fullerene-derived nanoparticles, Sensors, 18 (2018) 1496.

Z.A. Alothman, S.M. Wabaidur, Application of carbon nanotubes in extraction and chromatographic analysis: A review, Arab. J. Chem. (in press 2018). https://doi.org/10.1016/j.arabjc.2018.05.012

M. Rosillo Lopez, C.G. Salzmann, Highly efficient heavy-metal extraction from water with carboxylated graphene nanoflakes, RSC. Adv., 8 (2018) 11043-11050.

K.C.M.S. Lima, A.C.F. Santos, R.N. Fernandes, F.S. Damos, R.D, Luz, Development of a novel sensor for isoniazid based on 2,3-dichloro-5,6-dicyano-p-benzoquinone, Microchem. J., 128 (2016) 226-234.

D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228-240.

J.P. Thielemann, F. Girgsdies, R. Schlögl, C. Hess, Pore structure and surface area of silica SBA-15: influence of washing and scale-up, Beilstein. j. nanotechnol., 2 (2011) 110-118.

X. Xue, F. Li, Removal of Cu (II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica, Micropor. Mesopor. Mater., 116 (2008) 116-122.

J. El Haskouri, J.M. Morales, D. Ortiz de Zárate, L. Fernández, J. Latorre, C. Guillem, A. Beltrán, D. Beltrán, P. Amorós, Nanoparticulated silicas with bimodal porosity: chemical control of the pore sizes, Chem., 47 (2008) 8267-8277.

J. Mo, L. Zhou, X. Li, Q. Li, L. Wang, Z. Wang, On-line separation and pre-concentration on a mesoporous silica-grafted graphene oxide adsorbent coupled with solution cathode glow discharge-atomic emission spectrometry for the determination of lead, Microchem. J., 130 (2017)

- 359.

S. Bayir, A. Barras, R. Boukherroub, S. Szunerits,

L. Raehm, S. Richeter, J.O. Durand, Mesoporous silica nanoparticles in recent photodynamic therapy applications, Photochem. Photobiol. Sci., 17.11 (2018): 1651-1674.

World medical association declaration of Helsinki, Ethical Principles for Medical Research Involving Human Subjects, Adopted by the 18th WMA General Assembly, Helsinki, Finland, June (1964). http://www.wma.net/en/30publications/10policies/b3

Published
2018-12-24
How to Cite
Davari, S., Hosseini, F., & Shirkhanloo, H. (2018). Dispersive solid phase microextraction based on aminefunctionalized bimodal mesoporous silica nanoparticles for separation and determination of calcium ions in chronic kidney disease. Analytical Methods in Environmental Chemistry Journal, 1(01), 57-66. https://doi.org/10.24200/amecj.v1.i01.37
Section
Original Article