A new analytical method based on bismuth oxide-fullerene nanoparticles and photocatalytic oxidation technique for toluene removal from workplace air

Vol 2, Issue 01, Pages 73-86,*** Field: Analysis in Occupational Health

  • Cobra Jamshidzadeh Kerman Un.
  • Hamid Shirkhanloo
Keywords: Toluene, Air removal, Bismuth oxide nanoparticles, bulky fullerene nanoparticles, UV-photocatalytic, Solid gas phase extraction

Abstract

A new sorbent based on mixture of bismuth oxide-fullerene nanoparticles (Bi2O3-NF) was used for degradation/removal of toluene from workplace and artificial air by UV-photocatalytic oxidation method (UV-PCOM). By set up of  pilot, standard gas of toluene was generated with difference concentrations, and then was passed through UV lamp-glass quartz cell accessory(UV-GQC) by SKC pump at optimized flow rate. Following the UV irradiation, the electrons and holes can undergo redox reactions with toluene on the Bi2O3 surface that lead to the formation of toluene intermediates and toluene. Toluene and intermediates was physically and radically absorbed on the 200 mg of NF at room temperature and then, desorbed from it at 185 OC before determined by GC/FID. In optimized conditions, the adsorption capacity and removal efficiency of NF were obtained 212 mg g-1 and more than 95%, respectively.

References

W. T. Tsai, Toxic volatile organic compounds (VOCs) in the atmospheric environment: Regulatory aspects and monitoring in Japan and Korea, Environ., 3 (2016) 23.

M.A. Bari, W.B. Kindzierski, Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment, Environ. Pollut., 235 (2018) 602-614.

B.C. McDonald, J.A. de Gouw, J.B. Gilman, S.H. Jathar, A. Akherati, C.D. Cappa, J.L. Jimenez, J. Lee-Taylor, P.L. Hayes, S.A. McKeen, Volatile chemical products emerging as largest petrochemical source of urban organic emissions, Sci., 359 (2018) 760-764.

Z. Cheng, B. Li, W. Yu, H. Wang, T. Zhang, J. Xiong, Z. Bu, Risk assessment of inhalation exposure to VOCs in dwellings in Chongqing, China, Toxicol. Res., 7 (2018) 59-72.

L. Zhong, F.-C. Su, S. Batterman, Volatile organic compounds (VOCs) in conventional and high performance school buildings in the US, Int. J. Environ. Res. Public Health, 14 (2017) 100.

J.C. Lerner, E. Sanchez, J. Sambeth, A. Porta, Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina, Atmospheric. Environ., 55 (2012) 440-447.

I.A.f.R.o. Cancer, IARC monographs on the evaluation of carcinogenic risks to humans, agents classified by the IARC monographs, (2015). Retrieved from http7/monographs. Iarc, fr/eng/classification/index. Php.

A.J. Wheeler, S.L. Wong, C. Khoury, J. Zhu, Predictors of indoor BTEX concentrations in Canadian residences, Health Rep., 24 (2013) 11.

S.J. Lawrence, Description, properties, and degradation of selected volatile organic compounds detected in ground water, a review of selected literature, 2006.

X. Xu, P. Wang, W. Xu, J. Wu, L. Chen, M. Fu, D. Ye, Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system, Chem. Eng. J., 283 (2016) 276-284.

W.K. Boyes, M. Bercegeay, L. Degn, T.E. Beasley, P.A. Evansky, J.C. Mwanza, A.M. Geller, C. Pinckney, T.M. Nork, P.J. Bushnell, Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long–Evans rats, Neurotoxicol., 53 (2016) 257-270.

Y. Li, J. Miao, X. Sun, J. Xiao, Y. Li, H. Wang, Q. Xia, Z. Li, Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity, Chem. Eng. J, 298 (2016) 191-197.

C.Y.H. Chao, C. Kwong, K. Hui, Potential use of a combined ozone and zeolite system for gaseous toluene elimination, J. Hazard. Mater., 143 (2007) 118-127.

M. Salar-García, V. Ortiz-Martínez, F. Hernández-Fernández, A. de Los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater., 321 (2017) 484-499.

D. Romero, D. Chlala, M. Labaki, S. Royer, J.-P. Bellat, I. Bezverkhyy, J.-M. Giraudon, J.-F. Lamonier, Removal of toluene over NaX zeolite exchanged with Cu2+, Catalysts, 5 (2015) 1479-1497.

Y.J. Tham, P.A. Latif, A.M. Abdullah, A. Shamala-Devi, Y. Taufiq-Yap, Performances of toluene removal by activated carbon derived from durian shell, Bioresour. Technol., 102 (2011) 724-728.

NIOSH manual of analytical methods, NIOSH, (1987).

H. Sui, H. Liu, P. An, L. He, X. Li, S. Cong, Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process, J. Taiwan Ins. Chem. Eng., (2017).

Z. Sihaib, F. Puleo, J. Garcia-Vargas, L. Retailleau, C. Descorme, L. Liotta, J. Valverde, S. Gil, A. Giroir-Fendler, Manganese oxide-based catalysts for toluene oxidation, App. Cat. B Environ., 209 (2017) 689-700.

Z. Pengyi, L. Fuyan, Y. Gang, C. Qing, Z. Wanpeng, A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV, J. Photochem. Photobiol., 156 (2003) 189-194.

S. Wang, H. Sun, H.-M. Ang, M. Tadé, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J., 226 (2013) 336-347.

G.B. Baur, O. Beswick, J. Spring, I. Yuranov, L. Kiwi-Minsker, Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities, Adsorption, 21 (2015) 255-264.

A. Faghihi-Zrandi, M. Akhgar, Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex, Environ. Sci. Technol., 18 (2016) 23-31.

G. Quijano, A. Couvert, A. Amrane, G. Darracq, C. Couriol, P. Le Cloirec, L. Paquin, D. Carrié, Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems, Chem. Eng. Sci., 66 (2011) 2707-2712.

F.G. Shahna, F. Golbabaei, J. Hamedi, H. Mahjub, H.R. Darabi, S.J. Shahtaheri, Treatment of benzene, toluene and xylene contaminated air in a bioactive foam emulsion reactor, Chinese.Chem. Eng., 18 (2010) 113-121.

F. Su, C. Lu, S. Hu, Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes, Colloids Surface A, 353 (2010) 83-91.

H. Shirkhanloo et al, Nobel Method for Toluene Removal from Air Based on Ionic Liquid Modified Nano-Graphen, Iranian J. Occp. Health, 6 (2015) 1-5.

M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40 ( 2006) 4336-4345.

Y. Li, Y. Wang, K.D. Pennell, L.M. Abriola, Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions, Environ. Sci. Technol., 42 (2008) 7174-7180.

A.G.C. A.V. Rode, E.G. Gamaly, S.T. Hyde, B. Luther Davie, carbon based magnetism, an overview of the magnetism of metal free carbon-based compounds and materials, Elsevier, (2006) 463-482.

T. Oppenländer, Photochemical purification of water and air: advanced oxidation processes (AOPs)-principles, reaction mechanisms, reactor concepts, John Wiley & Sons, (2003).

G.Y.M. Al-Nour, Photocatalytic degradation of organic contaminants in the presence of graphite supported and unsupported ZnO modified with CdS particles, Nablus: An-Najah National University, (2009).

H.I. De Lasa, B. Serrano, M. Salaices, Photocatalytic reaction engineering, Springer, 2005.

C. Montalvo-Romero, C. Aguilar-Ucán, M. Ramirez-Elias, V. Cordova-Quiroz, A Semi-Pilot Photocatalytic Rotating Reactor (RFR) with Supported TiO2/Ag Catalysts for Water Treatment, Molecul., 23 (2018) 224.

U.L. Rochetto, E. Tomaz, Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light, J. Air Waste Manag. Assoc, 65 (2015) 810-817.

H. Keypour, M. Noroozi, A. Rashidi, An improved method for the purification of fullerene from fullerene soot with activated carbon, celite, and silica gel stationary phases, J. Nanostruct. Chem., 3 (2013) 45.

K. Patil, S. Jeong, H. Lim, H.-S. Byun, S. Han, Removal of volatile organic compounds from air using activated carbon impregnated cellulose acetate electrospun mats, Environ. Eng. Res., (2018).

X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338 (2017) 102-123.

M. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations, Carbon, 43 (2005) 1758-1767.

F. Villacañas, M.F.R. Pereira, J.J. Órfão, J.L. Figueiredo, Adsorption of simple aromatic compounds on activated carbons, J. Colloid. Interface. Sci, 293 (2006) 128-136.

H. Ichiura, T. Kitaoka, H. Tanaka, Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique, Chemosphere, 50 (2003) 79-83.

Rezaee A., Pourtaghi Gh. H., Khavanin A., Saraf Mamoori R., Hajizadeh E., Vali pour F., Elimination of toluene by Application of ultraviolet irradiation on TiO2 nano particles photocatalyst, Mil. Med., 9 (2007) 217-222.

H. Asilian Mahabady, A. Khavanin, M. Nakhaei pour, H. irvani, S. Aresoomandan, H. Shojaee fareh abady, Efficiency evaluation of the photocatalytic removal of toluene vapour by titanium dioxide nanoparticles immobilized on ZSM-5 zeolite, Iran Occp. Health J., 15 (2018) 17-25.

R. Jonidi Jafar A, Survey of Modified Clinoptilolite Zeolite and Cooper Oxide Nanoparticles-Containing Modified Clinoptilolite Efficiency for Polluted Air BTX Removal, Iranian J. Health Environ., 5 (2012).

F. Rezaei, G. Moussavi, A.R. Riyahi Bakhtiari, Y. Yamini, Toluene adsorption from waste air stream using activated carbon impregnated with manganese and magnesium metal oxides, Iranian J. Health Environ., 8 (2016) 491-508.

Published
2019-03-29
How to Cite
Jamshidzadeh, C., & Shirkhanloo, H. (2019). A new analytical method based on bismuth oxide-fullerene nanoparticles and photocatalytic oxidation technique for toluene removal from workplace air. Analytical Methods in Environmental Chemistry Journal, 2(01), 73-86. https://doi.org/10.24200/amecj.v2.i01.55
Section
Original Article