Separation and determination of mercury from nail and hair in petrochemical workers based on silver carbon nanotubes by microwave-assisted headspace sorbent trap

Vol 3, Issue 02, Pages 21-33,*** Field: Biochemistry Analysis

  • Daniel Soleymani Occupational Health Engineering Department, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical sciences, Kerman, Iran
  • Sahar Zargari Software Engineer, Statistical sciences and engineering, Department of Web development and software engineering, RIPI
  • Ali Faghihi-Zarandi, (Corresponding Author)* Occupational Health Engineering Department, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical sciences
Keywords: Mercury, Nail and Hair, Silver multi-walled carbon nanotubes, Microwave-assisted headspace removal

Abstract

 

In this work, a robust method was developed for the determination of mercury in nail and hair in petrochemical workers. By experimental procedure, 100 mg of hair and nail of workers was prepared as a powder which dried in the oven for 20 min at 95oC.  20 mg of hair or nail samples added to reagents (HNO3/H2O2; 5:1) in polyethylene tube (PET) of microwave digestion and the mercury in resulting solution was removed with silver nanoparticles pasted on multi-walled carbon nanotubes (Ag-MWCNTs) which were placed in head space of separator. The mercury vapor was removed by Ag-MWCNTs as the headspace sorbent trap (HSST) under hood conditions. Finally, the mercury was online determined by cold vapor atomic absorption spectrometry after the heat process at 250oC in the presence of Ar gas. The capacity adsorptions of Ag-MWCNTs and MWCNTs for mercury removal were obtained 205.4 mg g-1 and 63.7 mg g-1, respectively.

References

H. Satoh, Occupational and environmental toxicology of mercury and its compounds, Industrial. Health, 38 (2000) 153-164.

B. Zhao, H.H. Yi, X.L. Tang, Q. Li, D.D. Liu, F.Y. Gao, Copper modified activated coke for mercury removal from coal-fired flue gas, Chem. Eng. J., 286 (2016) 585-593.

UN Environment Document Repository, Global mercury modelling: update of modelling results in the global mercury assessment 2013. https://wedocs.unep.org/handle/20.500.11822/13772 , 2015.

Y.S. Gao, Z. Zhang, J.W. Wu, L.H. Duan, A. Umar, L.Y. Sun, Z.H. Guo, Q. Wang, A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases, Environ. Sci. Technol., 47 (2013) 10813–10823.

S.L. Tang, L.N. Wang, X.B. Feng, Z.H. Feng, R.Y. Li, H.P. Fan, K. Li, Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, northern China, Fuel, 180 (2016) 194–204.

M. Sakamoto, N. Tatsuta, K. Izumo, P.T. Phan, L.D. Vu, M. Yamamoto, M. Nakamura, K. Nakai, K. Murata, Health impacts and biomarkers of prenatal exposure to methylmercury: Lessons from Minamata, Japan, Toxic., 6 (2018).

G.J. Zagury, C.-M. Neculita, C. Bastien, L. Deschênes, Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants, Environ. Toxicol. Chem., 25 (2006) 1138-1147.

C. Feng, Z. Zayas, L. Lima, S. Olivares, D. De La Rosa, S. Berail, E. Tessier, F. Pannier, D. Amouroux, Assessment of Hg contamination by a chlor-alkali plant in riverine and coastal sites combining Hg speciation and isotopic signature (Sagua la Grande River, Cuba),

J. Hazard. Mater., 371 (2019) 558-65.

L.-n. Liang, J.-b. Shi, B. He, G.-b. Jiang, C.-g. Yuan, Investigation of methyl mercury and total mercury contamination in mollusk samples collected from Coastal sites along the Chinese Bohai sea, J. Agric. Food. Chem., 51 (2003) 7373-7378.

C. Gundacker, S. Fröhlich, K. Graf-Rohrmeister, B. Eibenberger, V. Jessenig, D. Gicic, S. Prinz, K.J. Wittmann, H. Zeisler, B. Vallant, A. Pollak, P. Husslein, Perinatal lead and mercury exposure in Austria, Sci. Total. Environ., 408 (2010) 5744-5749.

S.E. Orr, C.C. Bridges, Chronic kidney disease and exposure to nephrotoxic metals, Int. J. Mol. Sci., 18 (2017).

H. Lohren, J. Bornhorst, R. Fitkau, G. Pohl, H.-J. Galla, T. Schwerdtle, Effects on and transfer across the blood-brain barrier in vitro—Comparison of organic and inorganic mercury species, BMC. Pharmacol. Toxicol., 17 (2016) 63.

G. Genchi, M.S. Sinicropi, A. Carocci, G. Lauria, A. Catalano, Mercury exposure and heart diseases, Int. J. Environ. Res. Public. Health, 14 (2017) 74.

F. Ruggieri, C. Majorani, F. Domanico, A. Alimonti, Mercury in children: current state on exposure through human biomonitoring studies, Int. J. Environ. Res. Public. Health, 14 (2017).

Centers for Disease Control and Prevention, National biomonitoring program: mercury, 2017. https://www.cdc.gov/biomonitoring/Mercury_BiomonitoringSummary.html/

X.F. Hu, K. Singh, H.M. Chan, Mercury exposure, blood pressure, and hypertension: A systematic review and dose-response meta-analysis, Environ. Health. Perspect., 126 (2018) 076002.

L.T. Budnik, L. Casteleyn, Mercury pollution in modern times and its socio-medical consequences, Sci. Total. Environ., 654 (2019) 720-734.

M.A. Kamyabi, A. Aghaei, A simple and selective approach for determination of trace Hg (II) using electromembrane extraction followed by graphite furnace atomic absorption spectrometry, Spectrochim. Acta Part B: At. Spect., 128 (2017) 17-21.

S.L.C. Ferreira, J.P. dos Anjos, C.S.A. Felix, M.M. da Silva Junior, E. Palacio, V. Cerda, Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry–Review, Trends. Anal. Chem., 110 (2019) 335-343.

M.-L. Lin, S.-J. Jiang, Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry, Food. Chem., 141 (2013) 2158-2162.

M. Thirumalai, S.N. Kumar, D. Prabhakaran, N. Sivaraman, M.A. Maheswari, Dynamically modified C18 silica monolithic column for the rapid determinations of lead, cadmium and mercury ions by reversed-phase high-performance liquid chromatography, J. Chromatogr. A, 1569 (2018) 62-69.

S. Wang, X. Song, J. Hu, R. Zhang, L. Men, M. Wei, T. Xie, J. Cao, Direct speciation analysis of organic mercury in fish and kelp by on-line complexation and stacking using capillary electrophoresis, Food. Chem., 281 (2019) 41-48.

Y. Wu, X. Wen, Z. Fan, An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells, Spectrochim. Acta. A. Mol. Biomol. Spec., 223 (2019) 117315.

A.A. Elezz, H. Mustafa Hassan, H. Abdulla Alsaadi, A. Easa, S. Al-Meer, K. Elsaid, Z.K. Ghouri, A. Abdala, Validation of total mercury in marine sediment and biological samples, using cold vapour atomic absorption spectrometry, Method. Protoc., 1 (2018) 31.

F. Mercader-Trejo, R. Herrera-Basurto, E.R. de San Miguel, J. de Gyves, Mercury determination in sediments by CVAAS after on line preconcentration by solid phase extraction with a sol-gel sorbent containing CYANEX 471X, Int. J. Environ. Anal. Chem., 91 (2011) 1062-1076.

V. Camel, Solid phase extraction of trace elements, Spectrochim. Acta. Part. B: At. Spec., 58 (2003) 1177-1233.

A.E. Visser, R.P. Swatloski, S.T. Griffin, D.H. Hartman, R.D. Rogers, Liquid-liquid extraction of metal ions in room temperature ionic liquids, Sep. Sci. Technol., 36 (2001) 785-804.

W.I. Mortada, I.M.M. Kenawy, Y.G. Abou El-Reash, A.A. Mousa, Microwave assisted modification of cellulose by gallic acid and its application for removal of aluminium from real samples, Int. J. Biol. Macromol., 101 (2017) 490-501.

A.H. El-Sheikh, Y.S. Al-Degs, R.M. Al-As'ad, J.A. Sweileh, Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg(II) sorption and preconcentration from real waters, Desalination, 270 (2011) 214-220.

G. Luo, H. Yao, M. Xu, X. Cui, W. Chen, R. Gupta, Z. Xu, Carbon Nanotube-Silver Composite for Mercury Capture and Analysis, Energ. Fuels, 24 (2010) 419-426.

H. Shirkhanloo, M. Osanloo, M. Ghazaghi, H. Hassani, Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls, Atmos. Pollut. Res., 8 (2017) 359-365.

Z. Wei, Y. Luo, B. Li, Z. Cheng, J. Wang, Q. Ye, Microwave assisted catalytic removal of elemental mercury from flue gas using Mn/zeolite catalyst, Atmos. Pollut. Res., 6 (2015) 45-51.

F. Shen, J. Liu, Y. Dong, D. Wu, C. Gu, Z. Zhang, Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents, Fuel, 239 (2019) 138-144.

H. Li, L. Zhu, J. Wang, L. Li, K. Shih, Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas, Environ. Sci. Technol., 50 (2016) 9551-9557.

T. Zhu, W. Jing, X. Zhang, W. Bian, Y. Han, T. Liu, Y. Hou, Z. Ye, Gas-phase elemental mercury removal by nano-ceramic material, Nanomater. Nanotechnol., 10 (2020) 1847980419899759.

S.-I. Lo, P.-C. Chen, C.-C. Huang, H.-T. Chang, Gold nanoparticle–aluminum oxide adsorbent for efficient removal of mercury species from natural waters, Environ. Sci. Technol., 46 (2012) 2724-2730.

R.S. El-Tawil, S.T. El-Wakeel, A.E. Abdel-Ghany, H.A.M. Abuzeid, K.A. Selim, A.M. Hashem, Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions, Heliyon, 5 (2019) e02415.

W. Marimón-Bolívar, L. Tejeda-Benítez, A.P. Herrera, Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass, Environ. Nanotechnol. Monit. Manage., 10 (2018) 486-493.

M. Krawczyk, E. Stanisz, Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of mercury species, Talanta, 161 (2016) 384-391.

S. Ma, M. He, B. Chen, W. Deng, Q. Zheng, B. Hu, Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples, Talanta, 146 (2016) 93-99.

J. Abolhasani, R. Hosseinzadeh Khanmiri, M. Babazadeh, E. Ghorbani-Kalhor, L. Edjlali, A. Hassanpour, Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite,

Environ. Monit. Assess., 187 (2015) 554.

M. Akbar, M. Manoochehri, An efficient 2-mercapto-5-phenylamino-1,3,4-thiadiazole functionalized magnetic graphene oxide nanocomposite for preconcentrative determination of mercury in water and seafood samples, Inorg. Chem. Commun., 103 (2019) 37-42.

M. Krawczyk, E. Stanisz, Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples, J. Anal. At. Spectrom., 30 (2015) 2353-2358.

Published
2020-06-27
How to Cite
Soleymani, D., Zargari, S., & Faghihi-Zarandi, A. (2020). Separation and determination of mercury from nail and hair in petrochemical workers based on silver carbon nanotubes by microwave-assisted headspace sorbent trap. Analytical Methods in Environmental Chemistry Journal, 3(02), 21-33. https://doi.org/10.24200/amecj.v3.i02.99
Section
Original Article